Bacterial Antibiotic Resistance: The Most Critical Pathogens (2024)

1. Coculescu B.-I. Antimicrobial resistance induced by genetic changes. J. Med. Life. 2009;2:114–123. [PMC free article] [PubMed] [Google Scholar]

2. Collignon P., Beggs J.J. Socioeconomic Enablers for Contagion: Factors Impelling the Antimicrobial Resistance Epidemic. Antibiotics. 2019;8:86. doi:10.3390/antibiotics8030086. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Stapleton P.D., Taylor P.W. Methicillin Resistance in Staphylococcus Aureus: Mechanisms and Modulation. Sci. Prog. 2002;85:57–72. doi:10.3184/003685002783238870. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. McGuinness W.A., Malachowa N., DeLeo F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017;90:269–281. [PMC free article] [PubMed] [Google Scholar]

5. Aslam B., Wang W., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., Nisar M.A., Alvi R.F., Aslam M.A., Qamar M.U., et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018;11:1645–1658. doi:10.2147/IDR.S173867. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Mulani M.S., Kamble E., Kumkar S.N., Tawre M.S., Pardesi K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019;10:539. doi:10.3389/fmicb.2019.00539. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. De Oliveira D.M.P., Forde B.M., Kidd T.J., Harris P.N.A., Schembri M.A., Beatson S.A., Paterson D.L., Walker M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020;33:181. doi:10.1128/CMR.00181-19. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Santajit S., Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int. 2016;2016:2475067. doi:10.1155/2016/2475067. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Breijyeh Z., Jubeh B., Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules. 2020;25:1340. doi:10.3390/molecules25061340. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. WHO W.H.O. 10 Threats to Global Health in 2018. [(accessed on 18 December 2020)]. Available online: https://medium.com/@who/10-threats-to-global-health-in-2018-232daf0bbef32018

11. Abdelaziz S., Aboshanab K., Yahia I., Yassien M., Hassouna N. Correlation between the Antibiotic Resistance Genes and Susceptibility to Antibiotics among the Carbapenem-Resistant Gram-Negative Pathogens. Antibiotics. 2021;10:255. doi:10.3390/antibiotics10030255. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. World Health Organization Ten Threats to Global Health in 2019. [(accessed on 18 December 2020)]. Available online: https://www.who.int/emergencies/ten-threats-to-global-health-in-2019

13. ECDC Communicable Disease and Threats Report CDTR. [(accessed on 18 December 2020)];2019 Available online: www.ecdc.europa.e

14. ECDC Biggest Threats and Data. [(accessed on 18 December 2020)]; Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf2019

15. Cepas V., Soto S.M. Relationship between Virulence and Resistance among Gram-Negative Bacteria. Antibiotics. 2020;9:719. doi:10.3390/antibiotics9100719. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Mir Saleem B.D., de la Bastide A., Korzen M. Antibiotics Overuse and Bacterial Resistance. Ann. Microbiol. Res. 2019;3:93–99. [Google Scholar]

17. Iramiot J.S., Kajumbula H., Bazira J., Kansiime C., Asiimwe B.B. Antimicrobial resistance at the human–animal interface in the Pastoralist Communities of Kasese District, South Western Uganda. Sci. Rep. 2020;10:14737. doi:10.1038/s41598-020-70517-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Malik B., Bhattacharyya S. Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci. Rep. 2019;9:9788. doi:10.1038/s41598-019-46078-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Reygaert W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4:482–501. doi:10.3934/microbiol.2018.3.482. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Sandner-Miranda L., Vinuesa P., Cravioto A., Morales-Espinosa R. The Genomic Basis of Intrinsic and Acquired Antibiotic Resistance in the Genus Serratia. Front. Microbiol. 2018;9:828. doi:10.3389/fmicb.2018.00828. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Ben Y., Fu C., Hu M., Liu L., Wong M.H., Zheng C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019;169:483–493. doi:10.1016/j.envres.2018.11.040. [PubMed] [CrossRef] [Google Scholar]

22. Friedrich A.W. Control of hospital acquired infections and antimicrobial resistance in Europe: The way to go. Wien. Med. Wochenschr. 2019;169:25–30. doi:10.1007/s10354-018-0676-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Sun D., Jeannot K., Xiao Y., Knapp C.W. Editorial: Horizontal Gene Transfer Mediated Bacterial Antibiotic Resistance. Front. Microbiol. 2019;10:1933. doi:10.3389/fmicb.2019.01933. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Benkő R., Gajdács M., Matuz M., Bodó G., Lázár A., Hajdú E., Papfalvi E., Hannauer P., Erdélyi P., Pető Z. Prevalence and Antibiotic Resistance of ESKAPE Pathogens Isolated in the Emergency Department of a Tertiary Care Teaching Hospital in Hungary: A 5-Year Retrospective Survey. Antibiotics. 2020;9:624. doi:10.3390/antibiotics9090624. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Kapoor G., Saigal S., Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017;33:300–305. doi:10.4103/joacp.JOACP_349_15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Schroeder M., Brooks B.D., Brooks A.E. The Complex Relationship between Virulence and Antibiotic Resistance. Genes. 2017;8:39. doi:10.3390/genes8010039. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Pandey R., Mishra S.K., Shrestha A. Characterisation of ESKAPE Pathogens with Special Reference to Multidrug Resistance and Biofilm Production in a Nepalese Hospital. Infect. Drug Resist. 2021;14:2201–2212. doi:10.2147/IDR.S306688. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Harding C.M., Hennon S.W., Feldman M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Genet. 2018;16:91–102. doi:10.1038/nrmicro.2017.148. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Kyriakidis I., Vasileiou E., Pana Z., Tragiannidis A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens. 2021;10:373. doi:10.3390/pathogens10030373. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Vrancianu C.O., Gheorghe I., Czobor I.B., Chifiriuc M.C. Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms. 2020;8:935. doi:10.3390/microorganisms8060935. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Mojica M.F., Bonomo R.A., Fast W. B1-Metallo-β-Lactamases: Where Do We Stand? Curr. Drug Targets. 2016;17:1029–1050. doi:10.2174/1389450116666151001105622. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Shaikh S., Fatima J., Shakil S., Rizvi S.M.D., Kamal M.A. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci. 2015;22:90–101. doi:10.1016/j.sjbs.2014.08.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Poirel L., Nordmann P. Carbapenem resistance in Acinetobacter baumannii: Mechanisms and epidemiology. Clin. Microbiol. Infect. 2006;12:826–836. doi:10.1111/j.1469-0691.2006.01456.x. [PubMed] [CrossRef] [Google Scholar]

34. Halat D.H., Moubareck C.A. The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics. 2020;9:186. doi:10.3390/antibiotics9040186. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Beceiro A., Dominguez L., Ribera A., Vila J., Molina F., Villanueva R., Eiros J.M., Bou G. Molecular Characterization of the Gene Encoding a New AmpC β-Lactamase in a Clinical Strain of Acinetobacter Genomic Species 3. Antimicrob. Agents Chemother. 2004;48:1374–1378. doi:10.1128/AAC.48.4.1374-1378.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Abdi S.N., Ghotaslou R., Ganbarov K., Mobed A., Tanomand A., Yousefi M., Asgharzadeh M., Kafil H.S. Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infect. Drug Resist. 2020;13:423–434. doi:10.2147/IDR.S228089. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Basatian-Tashkan B., Niakan M., Khaledi M., Afkhami H., Sameni F., Bakhti S., Mirnejad R. Antibiotic resistance assessment of Acinetobacter baumannii isolates from Tehran hospitals due to the presence of efflux pumps encoding genes (adeA and adeS genes) by molecular method. BMC Res. Notes. 2020;13:543. doi:10.1186/s13104-020-05387-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Pérez-Varela M., Corral J., Aranda J., Barbé J. Roles of Efflux Pumps from Different Superfamilies in the Surface-Associated Motility and Virulence of Acinetobacter baumannii ATCC 17978. Antimicrob. Agents Chemother. 2019;63:e02190-18. doi:10.1128/AAC.02190-18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Xu C., Bilya S., Xu W. adeABC efflux gene in Acinetobacter baumannii. New Microbes New Infect. 2019;30:100549. doi:10.1016/j.nmni.2019.100549. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Ramirez M.S., Nikolaidis N., Tolmasky M.E. Rise and dissemination of aminoglycoside resistance: The aac(6′)-Ib paradigm. Front. Microbiol. 2013;4:121. doi:10.3389/fmicb.2013.00121. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Chen L., Tan P., Zeng J., Yu X., Cai Y., Liao K., Guo P., Chen Y., Wu Z., Qu P., et al. Impact of an Intervention to Control Imipenem-Resistant Acinetobacter baumannii and Its Resistance Mechanisms: An 8-Year Survey. Front. Microbiol. 2021;11:610109. doi:10.3389/fmicb.2020.610109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Asif M., Alvi I.A., Rehman S.U. Insight into Acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect. Drug Resist. 2018;11:1249–1260. doi:10.2147/IDR.S166750. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Almasaudi S.B. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J. Biol. Sci. 2018;25:586–596. doi:10.1016/j.sjbs.2016.02.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Sugawara E., Nikaido H. OmpA Is the Principal Nonspecific Slow Porin of Acinetobacter baumannii. J. Bacteriol. 2012;194:4089–4096. doi:10.1128/JB.00435-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Kamoshida G., Akaji T., Takemoto N., Suzuki Y., Sato Y., Kai D., Hibino T., Yamaguchi D., Kikuchi-Ueda T., Nishida S., et al. Lipopolysaccharide-Deficient Acinetobacter baumannii Due to Colistin Resistance Is Killed by Neutrophil-Produced Lysozyme. Front. Microbiol. 2020;11:573. doi:10.3389/fmicb.2020.00573. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Lertsrisatit Y., Santimaleeworagun W., Thunyaharn S., Traipattanakul J. In vitro activity of colistin mono- and combination therapy against colistin-resistant Acinetobacter baumannii, mechanism of resistance, and clinical outcomes of patients infected with colistin-resistant A. baumannii at a Thai university hospital. Infect. Drug Resist. 2017;10:437–443. doi:10.2147/IDR.S148185. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Lee C.-R., Lee J.H., Park M., Park K.S., Bae I.K., Kim Y.B., Cha C.-J., Jeong B.C., Lee S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol. 2017;7:55. doi:10.3389/fcimb.2017.00055. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Vázquez-López R., Solano-Gálvez S.G., Vignon-Whaley J.J.J., Vaamonde J.A.A., Alonzo L.A.P., Reséndiz A.R., Álvarez M.M., López E.N.V., Franyuti-Kelly G., Álvarez-Hernández D.A., et al. Acinetobacter baumannii Resistance: A Real Challenge for Clinicians. Antibiotics. 2020;9:205. doi:10.3390/antibiotics9040205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Shankar C., Nabarro L.E.B., Anandan S., Veeraraghavan B. Minocycline and Tigecycline: What Is Their Role in the Treatment of Carbapenem-Resistant Gram–Negative Organisms? Microb. Drug Resist. 2017;23:437–446. doi:10.1089/mdr.2016.0043. [PubMed] [CrossRef] [Google Scholar]

50. Karaiskos I., Lagou S., Pontikis K., Rapti V., Poulakou G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health. 2019;7:151. doi:10.3389/fpubh.2019.00151. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Bagińska N., Cieślik M., Górski A., Jończyk-Matysiak E. The Role of Antibiotic Resistant A. baumannii in the Pathogenesis of Urinary Tract Infection and the Potential of Its Treatment with the Use of Bacteriophage Therapy. Antibiotics. 2021;10:281. doi:10.3390/antibiotics10030281. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Konca C., Tekin M., Geyik M. Susceptibility Patterns of Multidrug-Resistant Acinetobacter baumannii. Indian J. Pediatr. 2021;88:120–126. doi:10.1007/s12098-020-03346-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Nepka M., Perivolioti E., Kraniotaki E., Politi L., Tsakris A., Pournaras S. In Vitro Bactericidal Activity of Trimethoprim-Sulfamethoxazole Alone and in Combination with Colistin against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates. Antimicrob. Agents Chemother. 2016;60:6903–6906. doi:10.1128/AAC.01082-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Jurado-Martín I., Sainz-Mejías M., McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int. J. Mol. Sci. 2021;22:3128. doi:10.3390/ijms22063128. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Moradali M.F., Ghods S., Rehm B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. 2017;7:39. doi:10.3389/fcimb.2017.00039. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

See Also
Antibiotics

56. Recio R., Mancheño M., Viedma E., Villa J., Orellana M.Á., Lora-Tamayo J., Chaves F. Predictors of Mortality in Bloodstream Infections Caused by Pseudomonas aeruginosa and Impact of Antimicrobial Resistance and Bacterial Virulence. Antimicrob. Agents Chemother. 2020;64:e01759-19. doi:10.1128/AAC.01759-19. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Hwang W., Yoon S.S. Virulence Characteristics and an Action Mode of Antibiotic Resistance in Multidrug-Resistant Pseudomonas aeruginosa. Sci. Rep. 2019;9:1–15. doi:10.1038/s41598-018-37422-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Pang Z., Raudonis R., Glick B.R., Lin T.-J., Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019;37:177–192. doi:10.1016/j.biotechadv.2018.11.013. [PubMed] [CrossRef] [Google Scholar]

59. Henrichfreise B., Wiegand I., Pfister W., Wiedemann B. Resistance Mechanisms of Multiresistant Pseudomonas aeruginosa Strains from Germany and Correlation with Hypermutation. Antimicrob. Agents Chemother. 2007;51:4062–4070. doi:10.1128/AAC.00148-07. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Langendonk R.F., Neill D.R., Fothergill J.L. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front. Cell. Infect. Microbiol. 2021;11:665759. doi:10.3389/fcimb.2021.665759. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Sader H.S., Huband M.D., Castanheira M., Flamm R.K. Pseudomonas aeruginosa Antimicrobial Susceptibility Results from Four Years (2012 to 2015) of the International Network for Optimal Resistance Monitoring Program in the United States. Antimicrob. Agents Chemother. 2017;61:e02252-16. doi:10.1128/AAC.02252-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Dehbashi S., Tahmasebi H., Alikhani M.Y., Keramat F., Arabestani M.R. Distribution of Class B and Class A β-Lactamases in Clinical Strains of Pseudomonas aeruginosa: Comparison of Phenotypic Methods and High-Resolution Melting Analysis (HRMA) Assay. Infect. Drug Resist. 2020;13:2037–2052. doi:10.2147/IDR.S255292. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Pachori P., Gothalwal R., Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 2019;6:109–119. doi:10.1016/j.gendis.2019.04.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Berrazeg M., Jeannot K., Enguéné V.Y.N., Broutin I., Loeffert S., Fournier D., Plésiat P. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. Antimicrob. Agents Chemother. 2015;59:6248–6255. doi:10.1128/AAC.00825-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Ahmed S., Sony S.A., Chowdhury B., Ullah M., Paul S., Hossain T. Retention of antibiotic activity against resistant bacteria harbouring aminoglycoside-N-acetyltransferase enzyme by adjuvants: A combination of in-silico and in-vitro study. Sci. Rep. 2020;10:1–12. doi:10.1038/s41598-020-76355-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Ontong J.C., Ozioma N.F., Voravuthikunchai S.P., Chusri S. Synergistic antibacterial effects of colistin in combination with aminoglycoside, carbapenems, cephalosporins, fluoroquinolones, tetracyclines, fosfomycin, and piperacillin on multidrug resistant Klebsiella pneumoniae isolates. PLoS ONE. 2021;16:e0244673. doi:10.1371/journal.pone.0244673. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Pungcharoenkijkul S., Traipattanakul J., Thunyaharn S., Santimaleeworagun W. Antimicrobials as Single and Combination Therapy for Colistin-Resistant Pseudomonas aeruginosa at a University Hospital in Thailand. Antibiotics. 2020;9:475. doi:10.3390/antibiotics9080475. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Tigabu A., Getaneh A. Staphylococcus aureus, ESKAPE Bacteria Challenging Current Health Care and Community Settings: A Literature Review. Clin. Lab. 2021;67:930. doi:10.7754/Clin.Lab.2020.200930. [PubMed] [CrossRef] [Google Scholar]

69. Tong S.Y.C., Davis J.S., Eichenberger E., Holland T.L., Fowler V.G. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015;28:603–661. doi:10.1128/CMR.00134-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Gimza B.D., Cassat J.E. Mechanisms of Antibiotic Failure During Staphylococcus aureus Osteomyelitis. Front. Immunol. 2021;12:638085. doi:10.3389/fimmu.2021.638085. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Guo Y., Song G., Sun M., Wang J., Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2020;10:107. doi:10.3389/fcimb.2020.00107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Vestergaard M., Frees D., Ingmer H. Antibiotic Resistance and the MRSA Problem. Microbiol. Spectr. 2019;7:57. doi:10.1128/microbiolspec.GPP3-0057-2018. [PubMed] [CrossRef] [Google Scholar]

73. Lee A.S., De Lencastre H., Garau J., Kluytmans J., Malhotra-Kumar S., Peschel A., Harbarth S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 2018;4:18033. doi:10.1038/nrdp.2018.33. [PubMed] [CrossRef] [Google Scholar]

74. Turner N.A., Sharma-Kuinkel B.K., Maskarinec S., Eichenberger E., Shah P.P., Carugati M., Holland T.L., Fowler V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Genet. 2019;17:203–218. doi:10.1038/s41579-018-0147-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Mühlberg E., Umstätter F., Kleist C., Domhan C., Mier W., Uhl P. Renaissance of vancomycin: Approaches for breaking antibiotic resistance in multidrug-resistant bacteria. Can. J. Microbiol. 2020;66:11–16. doi:10.1139/cjm-2019-0309. [PubMed] [CrossRef] [Google Scholar]

76. Cong Y., Yang S., Rao X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J. Adv. Res. 2020;21:169–176. doi:10.1016/j.jare.2019.10.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Peérichon B., Courvalin P. VanA-Type Vancomycin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009;53:4580–4587. doi:10.1128/AAC.00346-09. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Kest H., Kaushik A. Vancomycin-Resistant Staphylococcus aureus: Formidable Threat or Silence before the Storm? Infect. Dis. Epidemiol. 2019;5:93. doi:10.23937/2474-3658/1510093. [CrossRef] [Google Scholar]

79. Gardete S., Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J. Clin. Investig. 2014;124:2836–2840. doi:10.1172/JCI68834. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Shariati A., Dadashi M., Moghadam M.T., Van Belkum A., Yaslianifard S., Darban-Sarokhalil D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: A systematic review and meta-analysis. Sci. Rep. 2020;10:1–16. doi:10.1038/s41598-020-69058-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Yaw L.K., Robinson J.O., Ho K.M. A comparison of long-term outcomes after meticillin-resistant and meticillin-sensitive Staphylococcus aureus bacteraemia: An observational cohort study. Lancet Infect. Dis. 2014;14:967–975. doi:10.1016/S1473-3099(14)70876-X. [PubMed] [CrossRef] [Google Scholar]

82. Nicolas I., Bordeau V., Bondon A., Baudy-Floc’H M., Felden B. Novel antibiotics effective against gram-positive and -negative multi-resistant bacteria with limited resistance. PLoS Biol. 2019;17:e3000337. doi:10.1371/journal.pbio.3000337. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Kim B.-N., Kim E.S., Oh M.-D. Oral antibiotic treatment of staphylococcal bone and joint infections in adults. J. Antimicrob. Chemother. 2014;69:309–322. doi:10.1093/jac/dkt374. [PubMed] [CrossRef] [Google Scholar]

84. Khodabandeh M., Mohammadi M., Abdolsalehi M.R., Alvandimanesh A., Gholami M., Bibalan M.H., Pournajaf A., Kafshgari R., Rajabnia R. Analysis of Resistance to Macrolide–Lincosamide–Streptogramin B Among mecA-Positive Staphylococcus Aureus Isolates. Osong Public Health Res. Perspect. 2019;10:25–31. doi:10.24171/j.phrp.2019.10.1.06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Timsina R., Shrestha U., Singh A., Timalsina B. Inducible clindamycin resistance and erm genes in Staphylococcus aureus in school children in Kathmandu, Nepal. Futur. Sci. OA. 2021;7:FSO361. doi:10.2144/fsoa-2020-0092. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Lewis J.S., Jorgensen J.H. Inducible Clindamycin Resistance in Staphylococci: Should Clinicians and Microbiologists be Concerned? Clin. Infect. Dis. 2005;40:280–285. doi:10.1086/426894. [PubMed] [CrossRef] [Google Scholar]

87. Jorgensen J.H., Crawford S.A., McElmeel M.L., Fiebelkorn K.R. Detection of Inducible Clindamycin Resistance of Staphylococci in Conjunction with Performance of Automated Broth Susceptibility Testing. J. Clin. Microbiol. 2004;42:1800–1802. doi:10.1128/JCM.42.4.1800-1802.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Caneiras C., Lito L., Melo-Cristino J., Duarte A. Community- and Hospital-Acquired Klebsiella pneumoniae Urinary Tract Infections in Portugal: Virulence and Antibiotic Resistance. Microorganisms. 2019;7:138. doi:10.3390/microorganisms7050138. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Eghbalpoor F., Habibi M., Azizi O., Karam M.R.A., Bouzari S. Antibiotic resistance, virulence and genetic diversity of Klebsiella pneumoniae in community- and hospital-acquired urinary tract infections in Iran. Acta Microbiol. Immunol. Hung. 2019;66:349–366. doi:10.1556/030.66.2019.006. [PubMed] [CrossRef] [Google Scholar]

90. Young T.M., Bray A.S., Nagpal R.K., Caudell D.L., Yadav H., Zafar M.A. Animal Model to Study Klebsiella pneumoniae Gastrointestinal Colonization and Host-to-Host Transmission. Infect. Immun. 2020;88:e00071-20. doi:10.1128/IAI.00071-20. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Effah C.Y., Sun T., Liu S., Wu Y. Klebsiella pneumoniae: An increasing threat to public health. Ann. Clin. Microbiol. Antimicrob. 2020;19:1–9. doi:10.1186/s12941-019-0343-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Lasko M.J., Nicolau D.P. Carbapenem-Resistant Enterobacterales: Considerations for Treatment in the Era of New Antimicrobials and Evolving Enzymology. Curr. Infect. Dis. Rep. 2020;22:1–12. doi:10.1007/s11908-020-0716-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Gualtero S., Valderrama S., Valencia M., Rueda D., Muñoz-Velandia O., Ariza B., Cortes G., Salgado D., Porras Y., Niño A. Factors associated with mortality in Infections caused by Carbapenem-resistant Enterobacteriaceae. J. Infect. Dev. Ctries. 2020;14:654–659. doi:10.3855/jidc.12267. [PubMed] [CrossRef] [Google Scholar]

94. Sheu C.-C., Chang Y.-T., Lin S.-Y., Chen Y.-H., Hsueh P.-R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front. Microbiol. 2019;10:80. doi:10.3389/fmicb.2019.00080. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Davin-Regli A. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front. Microbiol. 2015;6:392. doi:10.3389/fmicb.2015.00392. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Álvarez-Marín R., Lepe J.A., Gasch-Blasi O., Rodríguez-Martínez J.M., Calvo-Montes J., Lara-Contreras R., Martín-Gandul C., Tubau-Quintano F., Cano-García M.E., Rodríguez-López F., et al. Clinical characteristics and outcome of bacteraemia caused by Enterobacter cloacae and Klebsiella aerogenes: More similarities than differences. J. Glob. Antimicrob. Resist. 2021;25:351–358. doi:10.1016/j.jgar.2021.04.008. [PubMed] [CrossRef] [Google Scholar]

97. Reza A., Sutton J.M., Rahman K.M. Effectiveness of Efflux Pump Inhibitors as Biofilm Disruptors and Resistance Breakers in Gram-Negative (ESKAPEE) Bacteria. Antibiotics. 2019;8:229. doi:10.3390/antibiotics8040229. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Uzunović S., Ibrahimagić A., Bedenić B. Antibiotic resistance in Enterobacter cloacae strains with derepressed/partly derepressed/inducible AmpC and extendedspectrum beta-lactamases in Zenica-Doboj Canton, Bosnia and Herzegovina. Medicinski Glasnik. 2018;15:37–45. [PubMed] [Google Scholar]

99. Di Franco S., Alfieri A., Pace M., Sansone P., Pota V., Fittipaldi C., Fiore M., Passavanti M. Blood Stream Infections from MDR Bacteria. Life. 2021;11:575. doi:10.3390/life11060575. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Band V.I., Crispell E.K., Napier B.A., Herrera C.M., Tharp G.K., Vavikolanu K., Pohl J., Read T.D., Bosinger S.E., Trent M.S., et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nat. Microbiol. 2016;1:16053. doi:10.1038/nmicrobiol.2016.53. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. García-Solache M., Rice L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019;32:e00058-18. doi:10.1128/CMR.00058-18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Shiadeh S.M.J., Pormohammad A., Hashemi A., Lak P. Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: A systematic review and meta-analysis. Infect. Drug Resist. 2019;12:2713–2725. doi:10.2147/IDR.S206084. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Pöntinen A.K., Top J., Arredondo-Alonso S., Tonkin-Hill G., Freitas A.R., Novais C., Gladstone R.A., Pesonen M., Meneses R., Pesonen H., et al. Apparent nosocomial adaptation of Enterococcus faecalis predates the modern hospital era. Nat. Commun. 2021;12:1523. doi:10.1038/s41467-021-21749-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Ramos S., Silva V., Dapkevicius M., Igrejas G., Poeta P. Enterococci, from Harmless Bacteria to a Pathogen. Microorganisms. 2020;8:1118. doi:10.3390/microorganisms8081118. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Zaheer R., Cook S.R., Barbieri R., Goji N., Cameron A., Petkau A., Polo R.O., Tymensen L., Stamm C., Song J., et al. Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci. Rep. 2020;10:3937. doi:10.1038/s41598-020-61002-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Jubeh B., Breijyeh Z., Karaman R. Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules. 2020;25:2888. doi:10.3390/molecules25122888. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Mishra N., Stolarzewicz I., Cannaerts D., Schuermans J., Lavigne R., Looz Y., Landuyt B., Schoofs L., Schols D., Paeshuyse J., et al. Iterative Chemical Engineering of Vancomycin Leads to Novel Vancomycin Analogs with a High in Vitro Therapeutic Index. Front. Microbiol. 2018;9:1175. doi:10.3389/fmicb.2018.01175. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Cetinkaya Y., Falk P., Mayhall C.G. Vancomycin-Resistant Enterococci. Clin. Microbiol. Rev. 2000;13:686–707. doi:10.1128/CMR.13.4.686. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Kim M., Moon D., Kim S.-J., Mechesso A., Song H.-J., Kang H., Choi J.-H., Yoon S.-S., Lim S.-K. Nationwide Surveillance on Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Food Animals in South Korea, 2010 to 2019. Microorganisms. 2021;9:925. doi:10.3390/microorganisms9050925. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Andersson D.I., Nicoloff H., Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Genet. 2019;17:479–496. doi:10.1038/s41579-019-0218-1. [PubMed] [CrossRef] [Google Scholar]

111. Metzler K., Hansen G., Hedlin P., Harding E., Drlica K., Blondeau J. Comparison of minimal inhibitory and mutant prevention drug concentrations of 4 fluoroquinolones against clinical isolates of methicillin-susceptible and -resistant Staphylococcus aureus. Int. J. Antimicrob. Agents. 2004;24:161–167. doi:10.1016/j.ijantimicag.2004.02.021. [PubMed] [CrossRef] [Google Scholar]

112. Gianvecchio C., Lozano N.A., Henderson C., Kalhori P., Bullivant A., Valencia A., Su L., Bello G., Wong M., Cook E., et al. Variation in Mutant Prevention Concentrations. Front. Microbiol. 2019;10:42. doi:10.3389/fmicb.2019.00042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Bacterial Antibiotic Resistance: The Most Critical Pathogens (2024)

FAQs

What is the most resistant pathogen? ›

Methicillin-Resistant Staphylococcus Aureus

This type of bacteria is resistant to many antibiotics, including methicillin. Most methicillin-resistant Staphylococcus aureus, or MRSA, infections contracted outside of a hospital are skin infections.

Why is antibiotic resistance one of the top concerns for the CDC? ›

Key points. Antimicrobial resistance (AR) happens when germs develop the ability to defeat the drugs designed to kill them. AR has the potential to affect people at any stage of life, as well as the healthcare, veterinary and agriculture industries. This makes it one of the world's most urgent public health problems.

Who are the antimicrobial resistance priority pathogens? ›

Priority categoryPathogensAntibiotic resistance
1. CriticalAcinetobacter baumanniiCarbapenem-resistant
Enterobacteriaceae*Third generation cephalosporin-resistant
2. HighEnterococcus faeciumVancomycin-resistant
Staphylococcus aureusMethicillin-resistant
10 more rows

What bacteria are extremely resistant to antibiotics? ›

Important examples of antimicrobial resistance strains of bacteria are: methicillin-resistant Staphylococcus aureus (MRSA) vancomycin-resistant Enterococcus (VRE) multi-drug-resistant Mycobacterium tuberculosis (MDR-TB)

What are the worst antibiotic-resistant bacteria? ›

These bacteria are associated with the most deaths from antibiotic-resistant infections globally: Escherichia coli (E. coli).

What is the most serious bacterial infection? ›

The most deadly bacterial disease contracted by human beings is mycobacterium tuberculosis, the world's leading infectious disease with more than 1,700,000 deaths per year. As much as 13% of cases are resistant to most antibiotics, and about 6% are resistant or unresponsive to essentially all treatment.

What is the single most important factor leading to antibiotic resistance around the world? ›

Overview. The use of antimicrobials is the single most important factor leading to antimicrobial resistance (AR) around the world.

Is antibiotic resistance one of the biggest threats to global health today? ›

The World Health Organization (WHO) lists AMR among the top 10 threats for global health. Antimicrobial resistance threatens human and animal health and welfare, the environment, food and nutrition security and safety, economic development and equity within societies.

What is the strongest antibiotic for bacterial infection? ›

Vancomycin is used to treat serious bacterial infections. It is an antibiotic that works by stopping the growth of bacteria.

What is the deadliest bacteria in history? ›

Plague is caused by the bacterium Yersinia pestis. Plague, one of the deadliest bacterial infections in human history, caused an estimated 50 million deaths in Europe during the Middle Ages when it was known as the Black Death.

What antibiotic kills all infections? ›

There is no one type of antibiotic that cures every infection. Antibiotics specifically treat infections caused by bacteria, such as Staph., Strep., or E. coli., and either kill the bacteria (bactericidal) or keep it from reproducing and growing (bacteriostatic). Antibiotics do not work against any viral infection.

What is the most resilient bacteria? ›

The bacterium Deinococcus radiodurans is a champion of extreme radiation resistance that is accounted for by a highly efficient protection against proteome, but not genome, damage.

What is the hardest bacterial infection to get rid of? ›

MRSA: MRSA or methicillin-resistant Staphylococcus aureus is a difficult-to-treat strain of staph infection. Although MRSA is antibiotic-resistant, there are still some antibiotics it responds to and the frequency of life-threatening MRSA has declined.

What bacteria cannot be killed by antibiotics? ›

Antibiotic resistance and 'superbugs'
  • MRSA (methicillin-resistant Staphylococcus aureus)
  • Clostridium difficile (C. diff)
  • the bacteria that cause multi-drug-resistant tuberculosis.

What is the strongest bacteria killer? ›

The world's last line of defense against disease-causing bacteria just got a new warrior: vancomycin 3.0. Its predecessor—vancomycin 1.0—has been used since 1958 to combat dangerous infections like methicillin-resistant Staphylococcus aureus.

What organism is the most resistant? ›

Tardigrades are among the most resilient animals known, with individual species able to survive extreme conditions – such as exposure to extreme temperatures, extreme pressures (both high and low), air deprivation, radiation, dehydration, and starvation – that would quickly kill most other known forms of life.

Which pathogen is the hardest to treat? ›

The high priority category includes bacteria such as Enterococcus faecium and Staphylococcus aureus that are resistant to various antibiotics, such as vancomycin and fluoroquinolones.

What microorganisms are most resistant? ›

Different groups of bacteria vary in their susceptibility to biocides, with bacterial spores being the most resistant, followed by mycobacteria, then Gram-negative organisms, with cocci generally being the most sensitive.

Top Articles
​Family Planning
Dr. Michael Lange says Nuts and Seeds are not all created equal - Dr. Michael Lange
Spasa Parish
Rentals for rent in Maastricht
159R Bus Schedule Pdf
Sallisaw Bin Store
Black Adam Showtimes Near Maya Cinemas Delano
Espn Transfer Portal Basketball
Pollen Levels Richmond
11 Best Sites Like The Chive For Funny Pictures and Memes
Things to do in Wichita Falls on weekends 12-15 September
Craigslist Pets Huntsville Alabama
Paulette Goddard | American Actress, Modern Times, Charlie Chaplin
Red Dead Redemption 2 Legendary Fish Locations Guide (“A Fisher of Fish”)
What's the Difference Between Halal and Haram Meat & Food?
R/Skinwalker
Rugged Gentleman Barber Shop Martinsburg Wv
Jennifer Lenzini Leaving Ktiv
Ems Isd Skyward Family Access
Elektrische Arbeit W (Kilowattstunden kWh Strompreis Berechnen Berechnung)
Omni Id Portal Waconia
Kellifans.com
Banned in NYC: Airbnb One Year Later
Four-Legged Friday: Meet Tuscaloosa's Adoptable All-Stars Cub & Pickle
Model Center Jasmin
Ice Dodo Unblocked 76
Is Slatt Offensive
Labcorp Locations Near Me
Storm Prediction Center Convective Outlook
Experience the Convenience of Po Box 790010 St Louis Mo
Fungal Symbiote Terraria
modelo julia - PLAYBOARD
Poker News Views Gossip
Abby's Caribbean Cafe
Joanna Gaines Reveals Who Bought the 'Fixer Upper' Lake House and Her Favorite Features of the Milestone Project
Tri-State Dog Racing Results
Navy Qrs Supervisor Answers
Trade Chart Dave Richard
Lincoln Financial Field Section 110
Free Stuff Craigslist Roanoke Va
Wi Dept Of Regulation & Licensing
Pick N Pull Near Me [Locator Map + Guide + FAQ]
Crystal Westbrooks Nipple
Ice Hockey Dboard
Über 60 Prozent Rabatt auf E-Bikes: Aldi reduziert sämtliche Pedelecs stark im Preis - nur noch für kurze Zeit
Wie blocke ich einen Bot aus Boardman/USA - sellerforum.de
Infinity Pool Showtimes Near Maya Cinemas Bakersfield
Dermpathdiagnostics Com Pay Invoice
How To Use Price Chopper Points At Quiktrip
Maria Butina Bikini
Busted Newspaper Zapata Tx
Latest Posts
Article information

Author: Trent Wehner

Last Updated:

Views: 5868

Rating: 4.6 / 5 (76 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Trent Wehner

Birthday: 1993-03-14

Address: 872 Kevin Squares, New Codyville, AK 01785-0416

Phone: +18698800304764

Job: Senior Farming Developer

Hobby: Paintball, Calligraphy, Hunting, Flying disc, Lapidary, Rafting, Inline skating

Introduction: My name is Trent Wehner, I am a talented, brainy, zealous, light, funny, gleaming, attractive person who loves writing and wants to share my knowledge and understanding with you.