Regulation of Energy Substrate Metabolism in Endurance Exercise (2024)

1. Astrand P.O. Human physical fitness with special reference to sex and age. Physiol. Rev. 1956;36:307–335. doi:10.1152/physrev.1956.36.3.307. [PubMed] [CrossRef] [Google Scholar]

2. Hawley J.A., Hargreaves M., Joyner M.J., Zierath J.R. Integrative biology of exercise. Cell. 2014;159:738–749. doi:10.1016/j.cell.2014.10.029. [PubMed] [CrossRef] [Google Scholar]

3. Gaitanos G.C., Williams C., Boobis L.H., Brooks S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. 1993;75:712–719. doi:10.1152/jappl.1993.75.2.712. [PubMed] [CrossRef] [Google Scholar]

4. Parolin M.L., Chesley A., Matsos M.P., Spriet L.L., Jones N.L., Heigenhauser G.J. Regulation of skeletal muscle glycogen phosphorylase and pdh during maximal intermittent exercise. Am. J. Physiol. 1999;277:E890–E900. doi:10.1152/ajpendo.1999.277.5.E890. [PubMed] [CrossRef] [Google Scholar]

5. Burke L.M., Hawley J.A. Swifter, higher, stronger: What's on the menu? Science. 2018;362:781–787. doi:10.1126/science.aau2093. [PubMed] [CrossRef] [Google Scholar]

6. Hood D.A., Irrcher I., Ljubicic V., Joseph A.M. Coordination of metabolic plasticity in skeletal muscle. J. Exp. Biol. 2006;209:2265–2275. doi:10.1242/jeb.02182. [PubMed] [CrossRef] [Google Scholar]

7. Hoppeler H., Fluck M. Plasticity of skeletal muscle mitochondria: Structure and function. Med. Sci. Sports Exerc. 2003;35:95–104. doi:10.1097/00005768-200301000-00016. [PubMed] [CrossRef] [Google Scholar]

8. Stepto N.K., Coffey V.G., Carey A.L., Ponnampalam A.P., Canny B.J., Powell D., Hawley J.A. Global gene expression in skeletal muscle from well-trained strength and endurance athletes. Med. Sci. Sports Exerc. 2009;41:546–565. doi:10.1249/MSS.0b013e31818c6be9. [PubMed] [CrossRef] [Google Scholar]

9. Hoppeler H. The different relationship of VO2 to muscle mitochondria in humans and quadrupedal animals. Respir. Physiol. 1990;80:137–145. doi:10.1016/0034-5687(90)90077-C. [PubMed] [CrossRef] [Google Scholar]

10. Hargreaves M., Spriet L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020;2:817–828. doi:10.1038/s42255-020-0251-4. [PubMed] [CrossRef] [Google Scholar]

11. Ahlborg B., Bergstrom J., Ekelund L., Hultman E. Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta. Physiol. Scand. 1967;70:129–142. doi:10.1111/j.1748-1716.1967.tb03608.x. [CrossRef] [Google Scholar]

12. Bergstrom J., Hultman E. The effect of exercise on muscle glycogen and electrolytes in normals. Scand. J. Clin. Lab. Investig. 1966;18:16–20. doi:10.3109/00365516609065602. [PubMed] [CrossRef] [Google Scholar]

13. Betts J.A., Williams C., Boobis L., Tsintzas K. Increased carbohydrate oxidation after ingesting carbohydrate with added protein. Med. Sci. Sports Exerc. 2008;40:903–912. doi:10.1249/MSS.0b013e318164cb52. [PubMed] [CrossRef] [Google Scholar]

14. Burke L.M., Whitfield J., Heikura I.A., Ross M.L.R., Tee N., Forbes S.F., Hall R., McKay A.K.A., Wallett A.M., Sharma A.P. Adaptation to a low carbohydrate high fat diet is rapid but impairs endurance exercise metabolism and performance despite enhanced glycogen availability. J. Physiol. 2020;599:771–790. doi:10.1113/JP280221. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Christensen E.H., Hansen O. Zur methodik der respiratorischen quotient-bestimungen in ruhe und bei arbeit. Skand. Arch. Physiol. 1939;81:137–171. doi:10.1111/j.1748-1716.1939.tb01318.x. [CrossRef] [Google Scholar]

16. Coggan A.R., Coyle E.F. Carbohydrate ingestion during prolonged exercise: Effects on metabolism and performance. Exerc. Sport Sci. Rev. 1991;19:1–40. doi:10.1249/00003677-199101000-00001. [PubMed] [CrossRef] [Google Scholar]

17. Costill D.L., Jansson E., Gollnick P.D., Saltin B. Glycogen utilization in leg muscles of men during level and uphill running. Acta Physiol. Scand. 1974;91:475–481. doi:10.1111/j.1748-1716.1974.tb05703.x. [PubMed] [CrossRef] [Google Scholar]

18. Cox G.R., Clark S.A., Cox A.J., Halson S.L., Hargreaves M., Hawley J.A., Jeaco*cke N., Snow R.J., Yeo W.K., Burke L.M. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J. Appl. Physiol. 2010;109:126–134. doi:10.1152/japplphysiol.00950.2009. [PubMed] [CrossRef] [Google Scholar]

19. Coyle E.F., Hagberg J.M., Hurley B.F., Martin W.H., Ehsani A.A., Holloszy J.O. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983;55:230–235. doi:10.1152/jappl.1983.55.1.230. [PubMed] [CrossRef] [Google Scholar]

20. Coyle E.F., Jeukendrup A.E., Wagenmakers A.J., Saris W.H. Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am. J. Physiol. 1997;273:E268–E275. doi:10.1152/ajpendo.1997.273.2.E268. [PubMed] [CrossRef] [Google Scholar]

21. Jeukendrup A.E., Mensink M., Saris W.H., Wagenmakers A.J. Exogenous glucose oxidation during exercise in endurance-trained and untrained subjects. J. Appl. Physiol. 1997;82:835–840. doi:10.1152/jappl.1997.82.3.835. [PubMed] [CrossRef] [Google Scholar]

22. Krogh A., Lindhard J. The relative value of fat and carbohydrate as sources of muscular energy: With appendices on th correlation between standard metabolism and the respiratory quotient during rest and work. Biochem. J. 1920;14:290–363. doi:10.1042/bj0140290. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Morton J.P., Croft L., Bartlett J.D., Maclaren D.P., Reilly T., Evans L., McArdle A., Drust B. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J. Appl. Physiol. 2009;106:1513–1521. doi:10.1152/japplphysiol.00003.2009. [PubMed] [CrossRef] [Google Scholar]

24. Saltin B. Metabolic fundamentals in exercise. Med. Sci. Sports. 1973;5:137–146. doi:10.1249/00005768-197323000-00010. [PubMed] [CrossRef] [Google Scholar]

25. Tsintzas O.K., Williams C., Boobis L., Greenhaff P. Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. Pt. 1J. Physiol. 1995;489:243–250. doi:10.1113/jphysiol.1995.sp021046. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Coyle E.F. Physical activity as a metabolic stressor. Am. J. Clin. Nutr. 2000;72:512S–520S. doi:10.1093/ajcn/72.2.512S. [PubMed] [CrossRef] [Google Scholar]

27. Wells G.D., Selvadurai H., Tein I. Bioenergetic provision of energy for muscular activity. Paediatr. Respir. Rev. 2009;10:83–90. doi:10.1016/j.prrv.2009.04.005. [PubMed] [CrossRef] [Google Scholar]

28. Romijn J., Coyle E., Sidossis L., Gastaldelli A., Horowitz J., Endert E., Wolfe R. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. Endocrinol. Metab. 1993;265:E380. doi:10.1152/ajpendo.1993.265.3.E380. [PubMed] [CrossRef] [Google Scholar]

29. Van Loon L.J., Greenhaff P.L., Constantin-Teodosiu D., Saris W.H., Wagenmakers A.J. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 2001;536:295–304. doi:10.1111/j.1469-7793.2001.00295.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Bergstrom J., Hermansen L., Hultman E., Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol. Scand. 1967;71:140–150. doi:10.1111/j.1748-1716.1967.tb03720.x. [PubMed] [CrossRef] [Google Scholar]

31. Hermansen L., Hultman E., Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol. Scand. 1967;71:129–139. doi:10.1111/j.1748-1716.1967.tb03719.x. [PubMed] [CrossRef] [Google Scholar]

32. Krssak M., Petersen K.F., Bergeron R., Price T., Laurent D., Rothman D.L., Roden M., Shulman G.I. Intramuscular glycogen and intramyocellular lipid utilization during prolonged exercise and recovery in man: A 13c and 1h nuclear magnetic resonance spectroscopy study. J. Clin. Endocrinol. Metab. 2000;85:748–754. doi:10.1210/jc.85.2.748. [PubMed] [CrossRef] [Google Scholar]

33. Hawley J.A., Maughan R.J., Hargreaves M. Exercise metabolism: Historical perspective. Cell Metab. 2015;22:12–17. doi:10.1016/j.cmet.2015.06.016. [PubMed] [CrossRef] [Google Scholar]

34. Essen B. Intramuscular substrate utilization during prolonged exercise. Ann. N. Y. Acad. Sci. 1977;301:30–44. doi:10.1111/j.1749-6632.1977.tb38183.x. [PubMed] [CrossRef] [Google Scholar]

35. Tarnopolsky L.J., MacDougall J.D., Atkinson S.A., Tarnopolsky M.A., Sutton J.R. Gender differences in substrate for endurance exercise. J. Appl. Physiol. 1990;68:302–308. doi:10.1152/jappl.1990.68.1.302. [PubMed] [CrossRef] [Google Scholar]

36. Febbraio M.A., Snow R.J., Stathis C.G., Hargreaves M., Carey M.F. Effect of heat stress on muscle energy metabolism during exercise. J. Appl. Physiol. 1994;77:2827–2831. doi:10.1152/jappl.1994.77.6.2827. [PubMed] [CrossRef] [Google Scholar]

37. Trommelen J., van Loon L.J.C. Assessing the whole-body protein synthetic response to feeding in vivo in human subjects. Proc. Nutr. Soc. 2021:1–9. doi:10.1017/S0029665120008009. [PubMed] [CrossRef] [Google Scholar]

38. Jeukendrup A.E., Wallis G.A. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int. J. Sports Med. 2005;26(Suppl. 1):S28–S37. doi:10.1055/s-2004-830512. [PubMed] [CrossRef] [Google Scholar]

39. Frayn K.N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983;55:628–634. doi:10.1152/jappl.1983.55.2.628. [PubMed] [CrossRef] [Google Scholar]

40. Breen L., Philp A., Shaw C.S., Jeukendrup A.E., Baar K., Tipton K.D. Beneficial effects of resistance exercise on glycemic control are not further improved by protein ingestion. PLoS ONE. 2011;6:e20613. doi:10.1371/journal.pone.0020613. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Hoppeler H., Baum O., Lurman G., Mueller M. Molecular mechanisms of muscle plasticity with exercise. Compr. Physiol. 2011;1:1383–1412. [PubMed] [Google Scholar]

42. Coffey V.G., Hawley J.A. Concurrent exercise training: Do opposites distract? J. Physiol. 2017;595:2883–2896. doi:10.1113/JP272270. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Nader G.A. Concurrent strength and endurance training: From molecules to man. Med. Sci. Sports Exerc. 2006;38:1965–1970. doi:10.1249/01.mss.0000233795.39282.33. [PubMed] [CrossRef] [Google Scholar]

44. Alghannam A.F., Jedrzejewski D., Tweddle M.G., Gribble H., Bilzon J., Thompson D., Tsintzas K., Betts J.A. Impact of muscle glycogen availability on the capacity for repeated exercise in man. Med. Sci. Sports Exerc. 2016;48:123–131. doi:10.1249/MSS.0000000000000737. [PubMed] [CrossRef] [Google Scholar]

45. Jeukendrup A.E. Nutrition for endurance sports: Marathon, triathlon, and road cycling. J. Sports Sci. 2011;29(Suppl. 1):S91–S99. doi:10.1080/02640414.2011.610348. [PubMed] [CrossRef] [Google Scholar]

46. Jones A.M., Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000;29:373–386. doi:10.2165/00007256-200029060-00001. [PubMed] [CrossRef] [Google Scholar]

47. Johnson N.A., Stannard S.R., Thompson M.W. Muscle triglyceride and glycogen in endurance exercise: Implications for performance. Sports Med. 2004;34:151–164. doi:10.2165/00007256-200434030-00002. [PubMed] [CrossRef] [Google Scholar]

48. Gonzalez J.T., Fuchs C.J., Betts J.A., van Loon L.J. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am. J. Physiol. Endocrinol. Metab. 2016;311:E543–E553. doi:10.1152/ajpendo.00232.2016. [PubMed] [CrossRef] [Google Scholar]

49. Jue T., Rothman D.L., Shulman G.I., Tavitian B.A., DeFronzo R.A., Shulman R.G. Direct observation of glycogen synthesis in human muscle with 13c nmr. Proc. Natl. Acad. Sci. USA. 1989;86:4489–4491. doi:10.1073/pnas.86.12.4489. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Shulman G.I., Rothman D.L., Jue T., Stein P., DeFronzo R.A., Shulman R.G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13c nuclear magnetic resonance spectroscopy. N. Engl. J. Med. 1990;322:223–228. doi:10.1056/NEJM199001253220403. [PubMed] [CrossRef] [Google Scholar]

51. Sherman W.M. Metabolism of sugars and physical performance. Am. J. Clin. Nutr. 1995;62:228S–241S. doi:10.1093/ajcn/62.1.228S. [PubMed] [CrossRef] [Google Scholar]

52. Sherman W.M., Costill D.L., Fink W.J., Miller J.M. Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int. J. Sports Med. 1981;2:114–118. doi:10.1055/s-2008-1034594. [PubMed] [CrossRef] [Google Scholar]

53. Casey A., Mann R., Banister K., Fox J., Morris P.G., Macdonald I.A., Greenhaff P.L. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by (13)c mrs. Am. J. Physiol. Endocrinol. Metab. 2000;278:E65–E75. doi:10.1152/ajpendo.2000.278.1.E65. [PubMed] [CrossRef] [Google Scholar]

54. Melendez R., Melendez-Hevia E., Canela E.I. The fractal structure of glycogen: A clever solution to optimize cell metabolism. Biophys. J. 1999;77:1327–1332. doi:10.1016/S0006-3495(99)76982-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Greenberg C.C., Jurczak M.J., Danos A.M., Brady M.J. Glycogen branches out: New perspectives on the role of glycogen metabolism in the integration of metabolic pathways. Am. J. Physiol. Endocrinol. Metab. 2006;291:E1–E8. doi:10.1152/ajpendo.00652.2005. [PubMed] [CrossRef] [Google Scholar]

56. Brushia R.J., Walsh D.A. Phosphorylase kinase: The complexity of its regulation is reflected in the complexity of its structure. Front. Biosci. 1999;4:D618–D641. doi:10.2741/Brushia. [PubMed] [CrossRef] [Google Scholar]

57. Watt M.J., Howlett K.F., Febbraio M.A., Spriet L.L., Hargreaves M. Adrenaline increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans. J. Physiol. 2001;534:269–278. doi:10.1111/j.1469-7793.2001.t01-1-00269.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Cantó C., Auwerx J. Pgc-1alpha, sirt1 and ampk, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 2009;20:98–105. doi:10.1097/MOL.0b013e328328d0a4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Hardie D.G., Hawley S.A., Scott J.W. Amp-activated protein kinase—Development of the energy sensor concept. J. Physiol. 2006;574:7–15. doi:10.1113/jphysiol.2006.108944. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Hardie D.G. Energy sensing by the amp-activated protein kinase and its effects on muscle metabolism. Proc. Nutr. Soc. 2011;70:92–99. doi:10.1017/S0029665110003915. [PubMed] [CrossRef] [Google Scholar]

61. Marcinko K., Steinberg G.R. The role of ampk in controlling metabolism and mitochondrial biogenesis during exercise. Exp. Physiol. 2014;99:1581–1585. doi:10.1113/expphysiol.2014.082255. [PubMed] [CrossRef] [Google Scholar]

62. Lantier L., Fentz J., Mounier R., Leclerc J., Treebak J.T., Pehmøller C., Sanz N., Sakakibara I., Saint-Amand E., Rimbaud S., et al. Ampk controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J. 2014;28:3211–3224. doi:10.1096/fj.14-250449. [PubMed] [CrossRef] [Google Scholar]

63. Rose A.J., Hargreaves M. Exercise increases Ca2+-calmodulin-dependent protein kinase ii activity in human skeletal muscle. J. Physiol. 2003;553:303–309. doi:10.1113/jphysiol.2003.054171. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Crivici A., Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu. Rev. Biophys. Biomol. Struct. 1995;24:85–116. doi:10.1146/annurev.bb.24.060195.000505. [PubMed] [CrossRef] [Google Scholar]

65. Ortenblad N., Westerblad H., Nielsen J. Muscle glycogen stores and fatigue. J. Physiol. 2013;591:4405–4413. doi:10.1113/jphysiol.2013.251629. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Ortenblad N., Nielsen J., Saltin B., Holmberg H.C. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J. Physiol. 2011;589:711–725. doi:10.1113/jphysiol.2010.195982. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Graham T.E., Adamo K.B., Shearer J., Marchand I., Saltin B. Pro- and macroglycogenolysis: Relationship with exercise intensity and duration. J. Appl. Physiol. 2001;90:873–879. doi:10.1152/jappl.2001.90.3.873. [PubMed] [CrossRef] [Google Scholar]

68. Arkinstall M.J., Bruce C.R., Clark S.A., Rickards C.A., Burke L.M., Hawley J.A. Regulation of fuel metabolism by preexercise muscle glycogen content and exercise intensity. J. Appl. Physiol. 2004;97:2275–2283. doi:10.1152/japplphysiol.00421.2004. [PubMed] [CrossRef] [Google Scholar]

69. Hargreaves M., McConell G., Proietto J. Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J. Appl. Physiol. 1995;78:288–292. doi:10.1152/jappl.1995.78.1.288. [PubMed] [CrossRef] [Google Scholar]

70. Wojtaszewski J.F., MacDonald C., Nielsen J.N., Hellsten Y., Hardie D.G., Kemp B.E., Kiens B., Richter E.A. Regulation of 5'amp-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2003;284:E813–E822. doi:10.1152/ajpendo.00436.2002. [PubMed] [CrossRef] [Google Scholar]

71. Shearer J., Marchand I., Tarnopolsky M.A., Dyck D.J., Graham T.E. Pro- and macroglycogenolysis during repeated exercise: Roles of glycogen content and phosphorylase activation. J. Appl. Physiol. 2001;90:880–888. doi:10.1152/jappl.2001.90.3.880. [PubMed] [CrossRef] [Google Scholar]

72. Hargreaves M. Muscle glycogen and metabolic regulation. Proc. Nutr. Soc. 2004;63:217–220. doi:10.1079/PNS2004344. [PubMed] [CrossRef] [Google Scholar]

73. Tsintzas K., Williams C. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. Sports Med. 1998;25:7–23. doi:10.2165/00007256-199825010-00002. [PubMed] [CrossRef] [Google Scholar]

74. Tsintzas O.K., Williams C., Boobis L., Greenhaff P. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. J. Appl. Physiol. 1996;81:801–809. doi:10.1152/jappl.1996.81.2.801. [PubMed] [CrossRef] [Google Scholar]

75. Stellingwerff T., Boon H., Gijsen A.P., Stegen J.H., Kuipers H., van Loon L.J. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use. Pflug. Arch. 2007;454:635–647. doi:10.1007/s00424-007-0236-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Coyle E.F., Coggan A.R., Hemmert M.K., Ivy J.L. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J. Appl. Physiol. 1986;61:165–172. doi:10.1152/jappl.1986.61.1.165. [PubMed] [CrossRef] [Google Scholar]

77. Jeukendrup A.E., Wagenmakers A.J., Stegen J.H., Gijsen A.P., Brouns F., Saris W.H. Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am. J. Physiol. 1999;276:E672–E683. doi:10.1152/ajpendo.1999.276.4.E672. [PubMed] [CrossRef] [Google Scholar]

78. Claassen A., Lambert E.V., Bosch A.N., Rodger M., St Clair Gibson A., Noakes T.D. Variability in exercise capacity and metabolic response during endurance exercise after a low carbohydrate diet. Int. J. Sport Nutr. Exerc. Metab. 2005;15:97–116. doi:10.1123/ijsnem.15.2.97. [PubMed] [CrossRef] [Google Scholar]

79. Nybo L., Moller K., Pedersen B.K., Nielsen B., Secher N.H. Association between fatigue and failure to preserve cerebral energy turnover during prolonged exercise. Acta Physiol. Scand. 2003;179:67–74. doi:10.1046/j.1365-201X.2003.01175.x. [PubMed] [CrossRef] [Google Scholar]

80. Dalsgaard M.K. Fuelling cerebral activity in exercising man. J. Cereb. Blood Flow Metab. 2006;26:731–750. doi:10.1038/sj.jcbfm.9600256. [PubMed] [CrossRef] [Google Scholar]

81. Karelis A.D., Smith J.W., Passe D.H., Peronnet F. Carbohydrate administration and exercise performance: What are the potential mechanisms involved? Sports Med. 2010;40:747–763. doi:10.2165/11533080-000000000-00000. [PubMed] [CrossRef] [Google Scholar]

82. Cermak N.M., Loon L. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43:1139–1155. doi:10.1007/s40279-013-0079-0. [PubMed] [CrossRef] [Google Scholar]

83. Tremblay J., Peronnet F., Massicotte D., Lavoie C. Carbohydrate supplementation and sex differences in fuel selection during exercise. Med. Sci. Sports Exerc. 2010;42:1314–1323. doi:10.1249/MSS.0b013e3181cbba0b. [PubMed] [CrossRef] [Google Scholar]

84. Walker J.L., Heigenhauser G.J., Hultman E., Spriet L.L. Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women. J. Appl. Physiol. 2000;88:2151–2158. doi:10.1152/jappl.2000.88.6.2151. [PubMed] [CrossRef] [Google Scholar]

85. Tarnopolsky M.A., Zawada C., Richmond L.B., Carter S., Shearer J., Graham T., Phillips S.M. Gender differences in carbohydrate loading are related to energy intake. J. Appl. Physiol. 2001;91:225–230. doi:10.1152/jappl.2001.91.1.225. [PubMed] [CrossRef] [Google Scholar]

86. McLay R.T., Thomson C.D., Williams S.M., Rehrer N.J. Carbohydrate loading and female endurance athletes: Effect of menstrual-cycle phase. Int. J. Sport Nutr. Exerc. Metab. 2007;17:189–205. doi:10.1123/ijsnem.17.2.189. [PubMed] [CrossRef] [Google Scholar]

87. Venables M.C., Achten J., Jeukendrup A.E. Determinants of fat oxidation during exercise in healthy men and women: A cross-sectional study. J. Appl. Physiol. 2005;98:160–167. doi:10.1152/japplphysiol.00662.2003. [PubMed] [CrossRef] [Google Scholar]

88. Tarnopolsky M.A. Sex differences in exercise metabolism and the role of 17-beta estradiol. Med. Sci. Sports Exerc. 2008;40:648–654. doi:10.1249/MSS.0b013e31816212ff. [PubMed] [CrossRef] [Google Scholar]

89. Brooks G.A., Mercier J. Balance of carbohydrate and lipid utilization during exercise: The “crossover” concept. J. Appl. Physiol. 1994;76:2253–2261. doi:10.1152/jappl.1994.76.6.2253. [PubMed] [CrossRef] [Google Scholar]

90. Dela F., Mikines K.J., von Linstow M., Secher N.H., Galbo H. Effect of training on insulin-mediated glucose uptake in human muscle. Am. J. Physiol. 1992;263:E1134–E1143. doi:10.1152/ajpendo.1992.263.6.E1134. [PubMed] [CrossRef] [Google Scholar]

91. Leblanc P.J., Howarth K.R., Gibala M.J., Heigenhauser G.J. Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise. J. Appl. Physiol. 2004;97:2148–2153. doi:10.1152/japplphysiol.00517.2004. [PubMed] [CrossRef] [Google Scholar]

92. Talanian J.L., Holloway G.P., Snook L.A., Heigenhauser G.J., Bonen A., Spriet L.L. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2010;299:E180–E188. doi:10.1152/ajpendo.00073.2010. [PubMed] [CrossRef] [Google Scholar]

93. Hulston C.J., Venables M.C., Mann C.H., Martin C., Philp A., Baar K., Jeukendrup A.E. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med. Sci. Sports Exerc. 2010;42:2046–2055. doi:10.1249/MSS.0b013e3181dd5070. [PubMed] [CrossRef] [Google Scholar]

94. Yeo W.K., Lessard S.J., Chen Z.P., Garnham A.P., Burke L.M., Rivas D.A., Kemp B.E., Hawley J.A. Fat adaptation followed by carbohydrate restoration increases ampk activity in skeletal muscle from trained humans. J. Appl. Physiol. 2008;105:1519–1526. doi:10.1152/japplphysiol.90540.2008. [PubMed] [CrossRef] [Google Scholar]

95. Logan-Sprenger H.M., Heigenhauser G.J., Jones G.L., Spriet L.L. Increase in skeletal-muscle glycogenolysis and perceived exertion with progressive dehydration during cycling in hydrated men. Int. J. Sport Nutr. Exerc. Metab. 2013;23:220–229. doi:10.1123/ijsnem.23.3.220. [PubMed] [CrossRef] [Google Scholar]

96. Starkie R.L., Hargreaves M., Lambert D.L., Proietto J., Febbraio M.A. Effect of temperature on muscle metabolism during submaximal exercise in humans. Exp. Physiol. 1999;84:775–784. doi:10.1111/j.1469-445X.1999.01815.x. [PubMed] [CrossRef] [Google Scholar]

97. Jacobs I., Romet T.T., Kerrigan-Brown D. Muscle glycogen depletion during exercise at 9 degrees C and 21 degrees C. Eur. J. Appl. Physiol. Occup. Physiol. 1985;54:35–39. doi:10.1007/BF00426295. [PubMed] [CrossRef] [Google Scholar]

98. Ahlborg G., Felig P., Hagenfeldt L., Hendler R., Wahren J. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J. Clin. Investig. 1974;53:1080–1090. doi:10.1172/JCI107645. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Wasserman D.H., Cherrington A.D. Hepatic fuel metabolism during muscular work: Role and regulation. Am. J. Physiol. 1991;260:E811–E824. doi:10.1152/ajpendo.1991.260.6.E811. [PubMed] [CrossRef] [Google Scholar]

100. co*ker R.H., Kjaer M. Glucoregulation during exercise: The role of the neuroendocrine system. Sports Med. 2005;35:575–583. doi:10.2165/00007256-200535070-00003. [PubMed] [CrossRef] [Google Scholar]

101. Wahren J., Felig P., Ahlborg G., Jorfeldt L. Glucose metabolism during leg exercise in man. J. Clin. Investig. 1971;50:2715–2725. doi:10.1172/JCI106772. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Suh S.H., Paik I.Y., Jacobs K. Regulation of blood glucose homeostasis during prolonged exercise. Mol. Cells. 2007;23:272–279. [PubMed] [Google Scholar]

103. Dardevet D., Moore M.C., Remond D., Everett-Grueter C.A., Cherrington A.D. Regulation of hepatic metabolism by enteral delivery of nutrients. Nutr. Res. Rev. 2006;19:161–173. doi:10.1017/S0954422407315175. [PubMed] [CrossRef] [Google Scholar]

104. Yabaluri N., Bashyam M.D. Hormonal regulation of gluconeogenic gene transcription in the liver. J. Biosci. 2010;35:473–484. doi:10.1007/s12038-010-0052-0. [PubMed] [CrossRef] [Google Scholar]

105. Nilsson L.H., Hultman E. Liver glycogen in man—The effect of total starvation or a carbohydrate-poor diet followed by carbohydrate refeeding. Scand. J. Clin. Lab. Investig. 1973;32:325–330. doi:10.3109/00365517309084355. [PubMed] [CrossRef] [Google Scholar]

106. Wahren J., Ekberg K. Splanchnic regulation of glucose production. Annu. Rev. Nutr. 2007;27:329–345. doi:10.1146/annurev.nutr.27.061406.093806. [PubMed] [CrossRef] [Google Scholar]

107. Chandramouli V., Ekberg K., Schumann W.C., Kalhan S.C., Wahren J., Landau B.R. Quantifying gluconeogenesis during fasting. Am. J. Physiol. 1997;273:E1209–E1215. doi:10.1152/ajpendo.1997.273.6.E1209. [PubMed] [CrossRef] [Google Scholar]

108. Wasserman D.H., Spalding J.A., Lacy D.B., Colburn C.A., Goldstein R.E., Cherrington A.D. Glucagon is a primary controller of hepatic glycogenolysis and gluconeogenesis during muscular work. Am. J. Physiol. 1989;257:E108–E117. doi:10.1152/ajpendo.1989.257.1.E108. [PubMed] [CrossRef] [Google Scholar]

109. Sindelar D.K., Balcom J.H., Chu C.A., Neal D.W., Cherrington A.D. A comparison of the effects of selective increases in peripheral or portal insulin on hepatic glucose production in the conscious dog. Diabetes. 1996;45:1594–1604. doi:10.2337/diab.45.11.1594. [PubMed] [CrossRef] [Google Scholar]

110. Felig P., Wahren J. Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man. J. Clin. Investig. 1971;50:1702–1711. doi:10.1172/JCI106659. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Girard J. Insulin’s effect on the liver: “Direct or indirect?” Continues to be the question. J. Clin. Investig. 2006;116:302–304. doi:10.1172/JCI27743. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Hoene M., Weigert C. The stress response of the liver to physical exercise. Exerc. Immunol. Rev. 2010;16:163–183. [PubMed] [Google Scholar]

113. Rowell L.B., Masoro E.J., Spencer M.J. Splanchnic metabolism in exercising man. J. Appl. Physiol. 1965;20:1032–1037. doi:10.1152/jappl.1965.20.5.1032. [PubMed] [CrossRef] [Google Scholar]

114. Vissing J., Wallace J.L., Galbo H. Effect of liver glycogen content on glucose production in running rats. J. Appl. Physiol. 1989;66:318–322. doi:10.1152/jappl.1989.66.1.318. [PubMed] [CrossRef] [Google Scholar]

115. Emhoff C.A., Messonnier L.A., Horning M.A., Fattor J.A., Carlson T.J., Brooks G.A. Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J. Appl. Physiol. 2013;114:297–306. doi:10.1152/japplphysiol.01202.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. co*ker R.H., Koyama Y., Denny J.C., Camacho R.C., Lacy D.B., Wasserman D.H. Prevention of overt hypoglycemia during exercise: Stimulation of endogenous glucose production independent of hepatic catecholamine action and changes in pancreatic hormone concentration. Diabetes. 2002;51:1310–1318. doi:10.2337/diabetes.51.5.1310. [PubMed] [CrossRef] [Google Scholar]

117. Kjaer M., Kiens B., Hargreaves M., Richter E.A. Influence of active muscle mass on glucose homeostasis during exercise in humans. J. Appl. Physiol. 1991;71:552–557. doi:10.1152/jappl.1991.71.2.552. [PubMed] [CrossRef] [Google Scholar]

118. Vissing J., Lewis S.F., Galbo H., Haller R.G. Effect of deficient muscular glycogenolysis on extramuscular fuel production in exercise. J. Appl. Physiol. 1992;72:1773–1779. doi:10.1152/jappl.1992.72.5.1773. [PubMed] [CrossRef] [Google Scholar]

119. Facey A., Irving R., Dilworth L. Overview of lactate metabolism and the implications for athletes. Am. J. Sports Sci. Med. 2013;1:42–46. [Google Scholar]

120. Emhoff C.A., Messonnier L.A., Horning M.A., Fattor J.A., Carlson T.J., Brooks G.A. Direct and indirect lactate oxidation in trained and untrained men. J. Appl. Physiol. 2013;115:829–838. doi:10.1152/japplphysiol.00538.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Mazzeo R.S., Brooks G.A., Schoeller D.A., Budinger T.F. Disposal of blood [1-13c] lactate in humans during rest and exercise. J. Appl. Physiol. 1986;60:232–241. doi:10.1152/jappl.1986.60.1.232. [PubMed] [CrossRef] [Google Scholar]

122. Van Hall G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol. (Oxf) 2010;199:499–508. doi:10.1111/j.1748-1716.2010.02122.x. [PubMed] [CrossRef] [Google Scholar]

123. Van Hall G., Strømstad M., Rasmussen P., Jans O., Zaar M., Gam C., Quistorff B., Secher N.H., Nielsen H.B. Blood lactate is an important energy source for the human brain. J. Cereb. Blood Flow Metab. 2009;29:1121–1129. doi:10.1038/jcbfm.2009.35. [PubMed] [CrossRef] [Google Scholar]

124. Bergman B.C., Horning M.A., Casazza G.A., Wolfel E.E., Butterfield G.E., Brooks G.A. Endurance training increases gluconeogenesis during rest and exercise in men. Am. J. Physiol. Endocrinol. Metab. 2000;278:E244–E251. doi:10.1152/ajpendo.2000.278.2.E244. [PubMed] [CrossRef] [Google Scholar]

125. Brooks G.A. The lactate shuttle during exercise and recovery. Med. Sci. Sports Exerc. 1986;18:360–368. doi:10.1249/00005768-198606000-00019. [PubMed] [CrossRef] [Google Scholar]

126. Medbø J.I., Jebens E., Noddeland H., Hanem S., Toska K. Lactate elimination and glycogen resynthesis after intense bicycling. Scand. J. Clin. Lab. Investig. 2006;66:211–226. doi:10.1080/00365510600570599. [PubMed] [CrossRef] [Google Scholar]

127. McGee S.L., Hargreaves M. Exercise and skeletal muscle glucose transporter 4 expression: Molecular mechanisms. Clin. Exp. Pharm. Physiol. 2006;33:395–399. doi:10.1111/j.1440-1681.2006.04362.x. [PubMed] [CrossRef] [Google Scholar]

128. Burgomaster K.A., Cermak N.M., Phillips S.M., Benton C.R., Bonen A., Gibala M.J. Divergent response of metabolite transport proteins in human skeletal muscle after sprint. Interval training and detraining. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R1970–R1976. doi:10.1152/ajpregu.00503.2006. [PubMed] [CrossRef] [Google Scholar]

129. Minchenko O., Opentanova I., Caro J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (pfkfb-1-4) expression in vivo. FEBS Lett. 2003;554:264–270. doi:10.1016/S0014-5793(03)01179-7. [PubMed] [CrossRef] [Google Scholar]

130. Spriet L.L. Regulation of skeletal muscle fat oxidation during exercise in humans. Med. Sci. Sports Exerc. 2002;34:1477–1484. doi:10.1097/00005768-200209000-00013. [PubMed] [CrossRef] [Google Scholar]

131. Stepto N.K., Carey A.L., Staudacher H.M., Cummings N.K., Burke L.M., Hawley J.A. Effect of short-term fat adaptation on high-intensity training. Med. Sci. Sports Exerc. 2002;34:449–455. doi:10.1097/00005768-200203000-00011. [PubMed] [CrossRef] [Google Scholar]

132. Wakil S.J., Abu-Elheiga L.A. Fatty acid metabolism: Target for metabolic syndrome. J. Lipid Res. 2009;50:S138–S143. doi:10.1194/jlr.R800079-JLR200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Frayn K.N. Fat as a fuel: Emerging understanding of the adipose tissue-skeletal muscle axis. Acta Physiol. 2010;199:509–518. doi:10.1111/j.1748-1716.2010.02128.x. [PubMed] [CrossRef] [Google Scholar]

134. Horowitz J.F., Klein S. Lipid metabolism during endurance exercise. Am. J. Clin. Nutr. 2000;72:558S–563S. doi:10.1093/ajcn/72.2.558S. [PubMed] [CrossRef] [Google Scholar]

135. Yeo W.K., Carey A.L., Burke L., Spriet L.L., Hawley J.A. Fat adaptation in well-trained athletes: Effects on cell metabolism. Appl. Physiol. Nutr. Metab. 2011;36:12–22. doi:10.1139/H10-089. [PubMed] [CrossRef] [Google Scholar]

136. Spriet L.L., Watt M.J. Regulatory mechanisms in the interaction between carbohydrate and lipid oxidation during exercise. Acta Physiol. Scand. 2003;178:443–452. doi:10.1046/j.1365-201X.2003.01152.x. [PubMed] [CrossRef] [Google Scholar]

137. Hue L., Taegtmeyer H. The randle cycle revisited: A new head for an old hat. Am. J. Physiol. Endocrinol. Metab. 2009;297:E578–E591. doi:10.1152/ajpendo.00093.2009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Perry C.G., Heigenhauser G.J., Bonen A., Spriet L.L. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl. Physiol. Nutr. Metab. 2008;33:1112–1123. doi:10.1139/H08-097. [PubMed] [CrossRef] [Google Scholar]

139. Van Loon L.J., Jeukendrup A.E., Saris W.H., Wagenmakers A.J. Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J. Appl. Physiol. 1999;87:1413–1420. doi:10.1152/jappl.1999.87.4.1413. [PubMed] [CrossRef] [Google Scholar]

140. Cheneviere X., Borrani F., Sangsue D., Gojanovic B., Malatesta D. Gender differences in whole-body fat oxidation kinetics during exercise. Appl. Physiol. Nutr. Metab. 2011;36:88–95. doi:10.1139/H10-086. [PubMed] [CrossRef] [Google Scholar]

141. Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol. Rev. 2006;86:205–243. doi:10.1152/physrev.00023.2004. [PubMed] [CrossRef] [Google Scholar]

142. Jeppesen J., Kiens B. Regulation and limitations to fat oxidation during exercise. J. Physiol. 2012 doi:10.1113/jphysiol.2011.225011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Van Loon L.J. Use of intramuscular triacylglycerol as a substrate source during exercise in humans. J. Appl. Physiol. 2004;97:1170–1187. doi:10.1152/japplphysiol.00368.2004. [PubMed] [CrossRef] [Google Scholar]

144. Schrauwen-Hinderling V.B., Hesselink M.K., Schrauwen P., Kooi M.E. Intramyocellular lipid content in human skeletal muscle. Obesity (Silver Spring) 2006;14:357–367. doi:10.1038/oby.2006.47. [PubMed] [CrossRef] [Google Scholar]

145. Martin W.H., 3rd, Dalsky G.P., Hurley B.F., Matthews D.E., Bier D.M., Hagberg J.M., Rogers M.A., King D.S., Holloszy J.O. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am. J. Physiol. 1993;265:E708–E714. doi:10.1152/ajpendo.1993.265.5.E708. [PubMed] [CrossRef] [Google Scholar]

146. Shaw C.S., Clark J., Wagenmakers A.J. The effect of exercise and nutrition on intramuscular fat metabolism and insulin sensitivity. Annu. Rev. Nutr. 2010;30:13–34. doi:10.1146/annurev.nutr.012809.104817. [PubMed] [CrossRef] [Google Scholar]

147. Holloszy J.O., Kohrt W.M., Hansen P.A. The regulation of carbohydrate and fat metabolism during and after exercise. Front. Biosci. 1998;3:D1011–D1027. doi:10.2741/A342. [PubMed] [CrossRef] [Google Scholar]

148. Arner P., Kriegholm E., Engfeldt P., Bolinder J. Adrenergic regulation of lipolysis in situ at rest and during exercise. J. Clin. Investig. 1990;85:893–898. doi:10.1172/JCI114516. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Romijn J.A., Coyle E.F., Sidossis L.S., Zhang X.J., Wolfe R.R. Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J. Appl. Physiol. 1995;79:1939–1945. doi:10.1152/jappl.1995.79.6.1939. [PubMed] [CrossRef] [Google Scholar]

150. Hansen D., Meeusen R., Mullens A., Dendale P. Effect of acute endurance and resistance exercise on endocrine hormones directly related to lipolysis and skeletal muscle protein synthesis in adult individuals with obesity. Sports Med. 2012;42:415–431. doi:10.2165/11599590-000000000-00000. [PubMed] [CrossRef] [Google Scholar]

151. Galbo H. Hormonal and Metabolic Adaptation to Exercise. Thieme-Stratton; New York, NY, USA: 1983. pp. 1–144. [Google Scholar]

152. Castan I., Valet P., Quideau N., Voisin T., Ambid L., Laburthe M., Lafontan M., Carpene C. Antilipolytic effects of alpha 2-adrenergic agonists, neuropeptide y, adenosine, and pge1 in mammal adipocytes. Am. J. Physiol. 1994;266:R1141–R1147. doi:10.1152/ajpregu.1994.266.4.R1141. [PubMed] [CrossRef] [Google Scholar]

153. Heinonen I., Wendelin-Saarenhovi M., Kaskinoro K., Knuuti J., Scheinin M., Kalliokoski K.K. Inhibition of alpha-adrenergic tone disturbs the distribution of blood flow in the exercising human limb. Am. J. Physiol. Heart Circ. Physiol. 2013;305:H163–H172. doi:10.1152/ajpheart.00925.2012. [PubMed] [CrossRef] [Google Scholar]

154. Liu C., Wu J., Zhu J., Kuei C., Yu J., Shelton J., Sutton S.W., Li X., Yun S.J., Mirzadegan T., et al. Lactate inhibits lipolysis in fat cells through activation of an orphan g-protein-coupled receptor, gpr81. J. Biol. Chem. 2009;284:2811–2822. doi:10.1074/jbc.M806409200. [PubMed] [CrossRef] [Google Scholar]

155. Stephens F.B., Constantin-Teodosiu D., Greenhaff P.L. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J. Physiol. 2007;581:431–444. doi:10.1113/jphysiol.2006.125799. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Harris R.C., Foster C.V., Hultman E. Acetylcarnitine formation during intense muscular contraction in humans. J. Appl. Physiol. 1987;63:440–442. doi:10.1152/jappl.1987.63.1.440. [PubMed] [CrossRef] [Google Scholar]

157. Roepstorff C., Halberg N., Hillig T., Saha A.K., Ruderman N.B., Wojtaszewski J.F., Richter E.A., Kiens B. Malonyl-coa and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am. J. Physiol. Endocrinol. Metab. 2005;288:E133–E142. doi:10.1152/ajpendo.00379.2004. [PubMed] [CrossRef] [Google Scholar]

158. McGarry J.D., Mills S.E., Long C.S., Foster D.W. Observations on the affinity for carnitine, and malonyl-coa sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-coa in non-hepatic tissues of the rat. Biochem. J. 1983;214:21–28. doi:10.1042/bj2140021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Winder W.W., Wilson H.A., Hardie D.G., Rasmussen B.B., Hutber C.A., Call G.B., Clayton R.D., Conley L.M., Yoon S., Zhou B. Phosphorylation of rat muscle acetyl-coa carboxylase by amp-activated protein kinase and protein kinase A. J. Appl. Physiol. 1997;82:219–225. doi:10.1152/jappl.1997.82.1.219. [PubMed] [CrossRef] [Google Scholar]

160. Egan B., Zierath J.R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–184. doi:10.1016/j.cmet.2012.12.012. [PubMed] [CrossRef] [Google Scholar]

161. Vogt M., Puntschart A., Howald H., Mueller B., Mannhart C., Gfeller-Tuescher L., Mullis P., Hoppeler H. Effects of dietary fat on muscle substrates, metabolism, and performance in athletes. Med. Sci. Sports Exerc. 2003;35:952–960. doi:10.1249/01.MSS.0000069336.30649.BD. [PubMed] [CrossRef] [Google Scholar]

162. Hawley J.A., Burke L.M., Phillips S.M., Spriet L.L. Nutritional modulation of training-induced skeletal muscle adaptations. J. Appl. Physiol. 2011;110:834–845. doi:10.1152/japplphysiol.00949.2010. [PubMed] [CrossRef] [Google Scholar]

163. Achten J., Jeukendrup A.E. Maximal fat oxidation during exercise in trained men. Int. J. Sports Med. 2003;24:603–608. [PubMed] [Google Scholar]

164. Capostagno B., Bosch A. Higher fat oxidation in running than cycling at the same exercise intensities. Int. J. Sport Nutr. Exerc. Metab. 2010;20:44–55. doi:10.1123/ijsnem.20.1.44. [PubMed] [CrossRef] [Google Scholar]

165. Tarnopolsky M. Protein requirements for endurance athletes. Nutrition. 2004;20:662–668. doi:10.1016/j.nut.2004.04.008. [PubMed] [CrossRef] [Google Scholar]

166. Rennie M.J., Bohe J., Smith K., Wackerhage H., Greenhaff P. Branched-chain amino acids as fuels and anabolic signals in human muscle. J. Nutr. 2006;136:264S–268S. doi:10.1093/jn/136.1.264S. [PubMed] [CrossRef] [Google Scholar]

167. Gibala M.J. Regulation of skeletal muscle amino acid metabolism during exercise. Int. J. Sport Nutr. Exerc. Metab. 2001;11:87–108. doi:10.1123/ijsnem.11.1.87. [PubMed] [CrossRef] [Google Scholar]

168. Gibala M.J. Protein metabolism and endurance exercise. Sports Med. 2007;37:337–340. doi:10.2165/00007256-200737040-00016. [PubMed] [CrossRef] [Google Scholar]

169. Shimomura Y., Murakami T., Nakai N., Nagasaki M., Harris R.A. Exercise promotes BCAA catabolism: Effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr. 2004;134:1583S–1587S. doi:10.1093/jn/134.6.1583S. [PubMed] [CrossRef] [Google Scholar]

170. Kato H., Suzuki K., Bannai M., Moore D.R. Protein requirements are elevated in endurance athletes after exercise as determined by the indicator amino acid oxidation method. PLoS ONE. 2016;11:e0157406. doi:10.1371/journal.pone.0157406. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. McKenzie S., Phillips S.M., Carter S.L., Lowther S., Gibala M.J., Tarnopolsky M.A. Endurance exercise training attenuates leucine oxidation and bcoad activation during exercise in humans. Am. J. Physiol. Endocrinol. Metab. 2000;278:E580–E587. doi:10.1152/ajpendo.2000.278.4.E580. [PubMed] [CrossRef] [Google Scholar]

172. Boyer B., Odessey R. Kinetic characterization of branched chain ketoacid dehydrogenase. Arch. Biochem. Biophys. 1991;285:1–7. doi:10.1016/0003-9861(91)90321-9. [PubMed] [CrossRef] [Google Scholar]

173. Wagenmakers A.J.M., Brookes J.H., Conley J.H., Reilly T., Edwards R.H.T. Exercise-induced activities of the branched-chain 2-oxo acid dehydrogenase in human muscle. Exerc. Sport Sci. Rev. 1989;59:159–167. [PubMed] [Google Scholar]

174. Phillips S.M., Atkinson S.A., Tarnopolsky M.A., MacDougall J.D. Gender differences in leucine kinetics and nitrogen balance in endurance athletes. J. Appl. Physiol. 1993;75:2134–2141. doi:10.1152/jappl.1993.75.5.2134. [PubMed] [CrossRef] [Google Scholar]

175. Lamont L.S., McCullough A.J., Kalhan S.C. Gender differences in the regulation of amino acid metabolism. J. Appl. Physiol. 2003;95:1259–1265. doi:10.1152/japplphysiol.01028.2002. [PubMed] [CrossRef] [Google Scholar]

176. She P., Zhou Y., Zhang Z., Griffin K., Gowda K., Lynch C.J. Disruption of bcaa metabolism in mice impairs exercise metabolism and endurance. J. Appl. Physiol. 2010;108:941–949. doi:10.1152/japplphysiol.01248.2009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Gaine P.C., Viesselman C.T., Pikosky M.A., Martin W.F., Armstrong L.E., Pescatello L.S., Rodriguez N.R. Aerobic exercise training decreases leucine oxidation at rest in healthy adults. J. Nutr. 2005;135:1088–1092. doi:10.1093/jn/135.5.1088. [PubMed] [CrossRef] [Google Scholar]

178. Devlin J.T., Brodsky I., Scrimgeour A., Fuller S., Bier D.M. Amino acid metabolism after intense exercise. Am. J. Physiol. 1990;258:E249–E255. doi:10.1152/ajpendo.1990.258.2.E249. [PubMed] [CrossRef] [Google Scholar]

179. Tipton K.D., Wolfe R.R. Protein and amino acids for athletes. J. Sports Sci. 2004;22:65–79. doi:10.1080/0264041031000140554. [PubMed] [CrossRef] [Google Scholar]

180. Gibala M.J., MacLean D.A., Graham T.E., Saltin B. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am. J. Physiol. 1998;275:E235–E242. doi:10.1152/ajpendo.1998.275.2.E235. [PubMed] [CrossRef] [Google Scholar]

181. Gualano A.B., Bozza T., Lopes De Campos P., Roschel H., Dos Santos Costa A., Luiz Marquezi M., Benatti F., Herbert Lancha Junior A. Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. J. Sports Med. Phys. Fit. 2011;51:82–88. [PubMed] [Google Scholar]

182. Bowtell J.L., Marwood S., Bruce M., Constantin-Teodosiu D., Greenhaff P.L. Tricarboxylic acid cycle intermediate pool size: Functional importance for oxidative metabolism in exercising human skeletal muscle. Sports Med. 2007;37:1071–1088. doi:10.2165/00007256-200737120-00005. [PubMed] [CrossRef] [Google Scholar]

183. Dawson K.D., Baker D.J., Greenhaff P.L., Gibala M.J. An acute decrease in TCA cycle intermediates does not affect aerobic energy delivery in contracting rat skeletal muscle. J. Physiol. 2005;565:637–643. doi:10.1113/jphysiol.2004.079939. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. Gibala M.J., Gonzalez-Alonso J., Saltin B. Dissociation between muscle tricarboxylic acid cycle pool size and aerobic energy provision during prolonged exercise in humans. J. Physiol. 2002;545:705–713. doi:10.1113/jphysiol.2002.028084. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. Howarth K.R., LeBlanc P.J., Heigenhauser G.J., Gibala M.J. Effect of endurance training on muscle tca cycle metabolism during exercise in humans. J. Appl. Physiol. 2004;97:579–584. doi:10.1152/japplphysiol.01344.2003. [PubMed] [CrossRef] [Google Scholar]

186. Felig P., Wahren J. Amino acid metabolism in exercising man. J. Clin. Investig. 1971;50:2703–2714. doi:10.1172/JCI106771. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

187. Wasserman D.H., Williams P.E., Lacy D.B., Green D.R., Cherrington A.D. Importance of intrahepatic mechanisms to gluconeogenesis from alanine during exercise and recovery. Am. J. Physiol. 1988;254:E518–E525. doi:10.1152/ajpendo.1988.254.4.E518. [PubMed] [CrossRef] [Google Scholar]

188. Riviere D., Crampes F., Beauville M., Garrigues M. Lipolytic response of fat cells to catecholamines in sedentary and exercise-trained women. J. Appl. Physiol. 1989;66:330–335. doi:10.1152/jappl.1989.66.1.330. [PubMed] [CrossRef] [Google Scholar]

189. Zhang X., Yang S., Chen J., Su Z. Unraveling the regulation of hepatic gluconeogenesis. Front. Endocrinol. 2019;9:802. doi:10.3389/fendo.2018.00802. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

190. Pinckaers P.J., Churchward-Venne T.A., Bailey D., van Loon L.J. Ketone bodies and exercise performance: The next magic bullet or merely hype? Sports Med. 2017;47:383–391. doi:10.1007/s40279-016-0577-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

191. Newman J.C., Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab. Tem. 2014;25:42–52. doi:10.1016/j.tem.2013.09.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Laffel L. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab. Res. Rev. 1999;15:412–426. doi:10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8. [PubMed] [CrossRef] [Google Scholar]

193. Burke L.M., Ross M.L., Garvican-Lewis L.A., Welvaert M., Heikura I.A., Forbes S.G., Mirtschin J.G., Cato L.E., Strobel N., Sharma A.P., et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol. 2017;595:2785–2807. doi:10.1113/JP273230. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

194. Howard E.E., Margolis L.M. Intramuscular mechanisms mediating adaptation to low-carbohydrate, high-fat diets during exercise training. Nutrients. 2020;12:998. doi:10.3390/nu12092496. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

195. Whitfield J., Burke L.M., McKay A.K.A., Heikura I.A., Hall R., Fensham N., Sharma A.P. Acute ketogenic diet and ketone ester supplementation impairs race walk performance. Med. Sci. Sports Exerc. 2020;53:776. doi:10.1249/MSS.0000000000002517. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

196. Heikura I.A., Burke L.M., Hawley J.A., Ross M.L., Garvican-Lewis L., Sharma A.P., McKay A.K.A., Leckey J.J., Welvaert M., McCall L., et al. A short-term ketogenic diet impairs markers of bone health in response to exercise. Front. Endocrinol. 2019;10:880. doi:10.3389/fendo.2019.00880. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Alghannam A.F., Gonzalez J.T., Betts J.A. Restoration of muscle glycogen and functional capacity: Role of post-exercise carbohydrate and protein co-ingestion. Nutrients. 2018;10:38. doi:10.3390/nu10020253. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Hearris M.A., Hammond K.M., Fell J.M., Morton J.P. Regulation of muscle glycogen metabolism during exercise: Implications for endurance performance and training adaptations. Nutrients. 2018;10:93. doi:10.3390/nu10030298. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

199. Spriet L.L. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014;44(Suppl. 1):S87–S96. doi:10.1007/s40279-014-0154-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

200. Egan B., O'Connor P.L., Zierath J.R., O’Gorman D.J. Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle. PLoS ONE. 2013;8:e74098. doi:10.1371/journal.pone.0074098. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

201. Silverman M.N., Deuster P.A. Biological mechanisms underlying the role of physical fitness in health and resilience. Interface Focus. 2014;4:20140040. doi:10.1098/rsfs.2014.0040. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Regulation of Energy Substrate Metabolism in Endurance Exercise (2024)

FAQs

What energy pathway is used during endurance type exercise? ›

For exercise lasting longer than three minutes, the oxidative pathway is used. Unlike the others, this energy system requires oxygen. The increase in respiratory rate meets the oxygen demand during physical activity. The oxidative system is slow, but is also the most efficient.

What is the energy substrate during exercise? ›

The source of energy substrates during exercise varies depending on exercise duration. During skeletal muscle contraction, in the first few seconds of exercise, energy is provided from ATP, which is immediately resynthesised from phosphocreatine (PC).

What are the metabolic changes in endurance training? ›

Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fiber-type transformation, and substrate metabolism.

What is regulation of energy metabolism? ›

Regulation of Energy Metabolism. Energy metabolism is tightly regulated to maintain the balance between energy production and utilization, ensuring the efficient utilization of nutrients and adaptation to varying physiological demands.

What is the source of energy for endurance exercise? ›

During high-intensity activities, carbohydrate provides nearly all the fuel needed to make ATP because it is the fastest most immediate source of energy and can provide ATP both aerobically and anaerobically. Both fuel use and contribution from the energy systems changes with the duration of the exercise.

Which energy system is predominately used during long endurance events? ›

So, to sum up the roles and differences of aerobic and anaerobic glycolysis, think of it like this: The aerobic glycolysis system is the predominant energy system used by endurance athletes in endurance events. It creates energy relatively slowly, but in huge proportions and for a long period of time.

What is the substrate for energy metabolism? ›

The human body requires energy to function. Adenosine triphosphate (ATP) is the cellular currency for energy-requiring processes including mechanical work (i.e., exercise). ATP used by the cells is ultimately derived from the catabolism of energy substrate molecules—carbohydrates, fat, and protein.

What is a factor in determining which energy systems and substrates are used during exercise? ›

The factors that determine the proportions of the energy systems used are intensity and duration of the exercise and the fitness levels of the individual.

What is the most important substrate for Fuelling high intensity endurance exercise? ›

The relative contribution of these metabolic pathways is primarily determined by the intensity and duration of exercise. For most events at the Olympics, carbohydrate is the primary fuel for anaerobic and aerobic metabolism.

How do you build metabolic endurance? ›

The best metabolic training exercises are strength training movements that target multiple muscle groups. These are called “compound” movements, as opposed to “isolated” movements which only focus on one muscle group at a time.

How does metabolism change during exercise? ›

With an increasing duration of exercise, glucose uptake by muscle begins to decline, and there is an increased dependency on free fatty acids for energy metabolism. Free fatty acid uptake becomes progressively greater, so that after 3–4 h of moderate exercise, free fatty acids are the predominant fuel being utilized.

How does muscular endurance increase metabolism? ›

Higher Muscle Mass Increases Basal Metabolic Rate (BMR)

One of the reasons muscle cells burn more calories is because they require energy to contract and relax. This means that even when you're not moving, muscle cells are burning calories. BMR accounts for about 60% of our body's energy expenditure.

What helps regulate energy metabolism? ›

In order to maintain energy homeostasis, the brain regulates diverse aspects of body metabolism, such as food-seeking behavior; gastric emptying; nutrient uptake in the gut; thermogenesis; pancreatic insulin secretion; and the effects of insulin in the liver, adipose tissue, and skeletal muscle.

What regulates your energy and your metabolism? ›

Hormones help regulate our metabolism. Some of the more common hormonal disorders affect the thyroid. This gland secretes hormones to regulate many metabolic processes, including energy expenditure (the rate at which kilojoules are burned).

What are the three types of energy metabolism? ›

Energy metabolism is the process of harvesting energy in the form of adenosine triphosphate (ATP) as a result of intracellular nutrient metabolism, such as aerobic respiration (oxidative phosphorylation), anaerobic respiration (glycolysis), and the metabolism of fatty acids and amino acids.

What energy system does muscular endurance training use? ›

Muscular endurance (to a degree) and aerobic fitness especially, fall into the aerobic system (number 4 above) although it's important to remember that the anaerobic systems will make some contribution as the aerobic system 'gears' up to supply ATP.

Is endurance exercise aerobic or anaerobic? ›

Aerobic exercise is often referred to as endurance or cardio exercise and happens when the large muscles in the body move in a rhythmic manner for a long period of time. Aerobic exercise involves increasing oxygen consumption by the body. Our body does this by increasing the breathing and heart rate.

What energy systems are used during exercise? ›

They are the creatine phosphate (ATP-PC), the anaerobic lactate (Glycolysis), and the aerobic systems. Most of the body's activities use a continuum of all three energy systems working together to ensure a constant supply of energy.

Top Articles
The Ultimate Guide to the Best Burger Toppings
Pizza Is Not a Vegetable, But Neither Is Anything Else
Funny Roblox Id Codes 2023
Golden Abyss - Chapter 5 - Lunar_Angel
Www.paystubportal.com/7-11 Login
Joi Databas
DPhil Research - List of thesis titles
Shs Games 1V1 Lol
Evil Dead Rise Showtimes Near Massena Movieplex
Steamy Afternoon With Handsome Fernando
Which aspects are important in sales |#1 Prospection
Detroit Lions 50 50
18443168434
Zürich Stadion Letzigrund detailed interactive seating plan with seat & row numbers | Sitzplan Saalplan with Sitzplatz & Reihen Nummerierung
Grace Caroline Deepfake
978-0137606801
Nwi Arrests Lake County
Immortal Ink Waxahachie
Craigslist Free Stuff Santa Cruz
Mflwer
Spergo Net Worth 2022
Costco Gas Foster City
Obsidian Guard's Cutlass
Marvon McCray Update: Did He Pass Away Or Is He Still Alive?
Mccain Agportal
Amih Stocktwits
Fort Mccoy Fire Map
Uta Kinesiology Advising
Kcwi Tv Schedule
What Time Does Walmart Auto Center Open
Nesb Routing Number
Olivia Maeday
Random Bibleizer
10 Best Places to Go and Things to Know for a Trip to the Hickory M...
Black Lion Backpack And Glider Voucher
Gopher Carts Pensacola Beach
Duke University Transcript Request
Lincoln Financial Field, section 110, row 4, home of Philadelphia Eagles, Temple Owls, page 1
Jambus - Definition, Beispiele, Merkmale, Wirkung
Netherforged Lavaproof Boots
Ark Unlock All Skins Command
Craigslist Red Wing Mn
D3 Boards
Jail View Sumter
Nancy Pazelt Obituary
Birmingham City Schools Clever Login
Thotsbook Com
Funkin' on the Heights
Vci Classified Paducah
Www Pig11 Net
Ty Glass Sentenced
Latest Posts
Article information

Author: Rob Wisoky

Last Updated:

Views: 6182

Rating: 4.8 / 5 (68 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Rob Wisoky

Birthday: 1994-09-30

Address: 5789 Michel Vista, West Domenic, OR 80464-9452

Phone: +97313824072371

Job: Education Orchestrator

Hobby: Lockpicking, Crocheting, Baton twirling, Video gaming, Jogging, Whittling, Model building

Introduction: My name is Rob Wisoky, I am a smiling, helpful, encouraging, zealous, energetic, faithful, fantastic person who loves writing and wants to share my knowledge and understanding with you.