Sleep, mood disorders, and the ketogenic diet: potential therapeutic targets for bipolar disorder and schizophrenia (2024)

1. Levenberg K, Cordner ZA. Bipolar depression: a review of treatment options. Gen Psychiatry (2022) 35(4):e100760. doi: 10.1136/gpsych-2022-100760 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Stępnicki P, Kondej M, Kaczor AA. Current concepts and treatments of schizophrenia. Molecules (2018) 23(8):2087. doi: 10.3390/molecules23082087 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Dean OM, Gliddon E, Van Rheenen TE, Giorlando F, Davidson SK, Kaur M, et al.. An update on adjunctive treatment options for bipolar disorder. Bipolar Disord (2018) 20(2):87–96. doi: 10.1111/bdi.12601 [PubMed] [CrossRef] [Google Scholar]

4. Jimenez-Fernandez S, Gurpegui M, Garrote-Rojas D, Gutierrez-Rojas L, Carretero MD, Correll CU. Oxidative stress parameters and antioxidants in patients with bipolar disorder: Results from a meta-analysis comparing patients, including stratification by polarity and euthymic status, with healthy controls. Bipolar Disord (2021) 23(2):117–29. doi: 10.1111/bdi.12980 [PubMed] [CrossRef] [Google Scholar]

5. Kim Y, Santos R, Gage FH, Marchetto MC. Molecular mechanisms of bipolar disorder: Progress made and future challenges. Front Cell Neurosci (2017) 11:30. doi: 10.3389/fncel.2017.00030 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J. Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci Biobehav Rev (2016) 68:694–713. doi: 10.1016/j.neubiorev.2016.06.040 [PubMed] [CrossRef] [Google Scholar]

7. Do KQ, Cabungcal JH, Frank A, Steullet P, Cuenod M. Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol (2009) 19(2):220–30. doi: 10.1016/j.conb.2009.05.001 [PubMed] [CrossRef] [Google Scholar]

8. Kossoff EH, Zupec-Kania BA, Rho JM. Ketogenic diets: an update for child neurologists. J Child Neurol (2009) 24(8):979–88. doi: 10.1177/0883073809337162 [PubMed] [CrossRef] [Google Scholar]

9. Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, et al.. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol (2008) 7(6):500–6. doi: 10.1016/S1474-4422(08)70092-9 [PubMed] [CrossRef] [Google Scholar]

10. Bough KJ, Rho JM. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia (2007) 48(1):43–58. doi: 10.1111/j.1528-1167.2007.00915.x [PubMed] [CrossRef] [Google Scholar]

11. Kim DY, Davis LM, Sullivan PG, Maalouf M, Simeone TA, van Brederode J, et al.. Ketone bodies are protective against oxidative stress in neocortical neurons. J Neurochem (2007) 101(5):1316–26. doi: 10.1111/j.1471-4159.2007.04483.x [PubMed] [CrossRef] [Google Scholar]

12. Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev (2009) 59(2):293–315. doi: 10.1016/j.brainresrev.2008.09.002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Greco T, Glenn TC, Hovda DA, Prins ML. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. J Cereb Blood Flow Metab (2016) 36(9):1603–13. doi: 10.1177/0271678X15610584 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. El-Mallakh RS, Paskitti ME. The ketogenic diet may have mood-stabilizing properties. Med Hypotheses (2001) 57(6):724–6. doi: 10.1054/mehy.2001.1446 [PubMed] [CrossRef] [Google Scholar]

15. Saraga M, Misson N, Cattani E. Ketogenic diet in bipolar disorder. Bipolar Disord (2020) 22(7):765. doi: 10.1111/bdi.13013 [PubMed] [CrossRef] [Google Scholar]

16. Phelps JR, Siemers SV, El-Mallakh RS. The ketogenic diet for type II bipolar disorder. Neurocase (2013) 19(5):423–6. doi: 10.1080/13554794.2012.690421 [PubMed] [CrossRef] [Google Scholar]

17. Chmiel I. Ketogenic diet in therapy of bipolar affective disorder - case report and literature review. Psychiatr Pol (2022) 56(6):1345–63. doi: 10.12740/PP/OnlineFirst/136356 [PubMed] [CrossRef] [Google Scholar]

18. Danan A, Westman EC, Saslow LR, Ede G. The ketogenic diet for refractory mental illness: A retrospective analysis of 31 inpatients. Front Psychiatry (2022) 13:951376. doi: 10.3389/fpsyt.2022.951376 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Palmer CM. Ketogenic diet in the treatment of schizoaffective disorder: Two case studies. Schizophr Res (2017) 189:208–9. doi: 10.1016/j.schres.2017.01.053 [PubMed] [CrossRef] [Google Scholar]

20. Palmer CM, Gilbert-Jaramillo J, Westman EC. The ketogenic diet and remission of psychotic symptoms in schizophrenia: Two case studies. Schizophr Res (2019) 208:439–40. doi: 10.1016/j.schres.2019.03.019 [PubMed] [CrossRef] [Google Scholar]

21. Needham N, Campbell IH, Grossi H, Kamenska I, Rigby BP, Simpson SA, et al.. Pilot study of a ketogenic diet in bipolar disorder. BJPsych Open (2023) 9(6):e176. doi: 10.1192/bjo.2023.568 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Harvey AG. Sleep and circadian rhythms in bipolar disorder: seeking synchrony, harmony, and regulation. Am J Psychiatry (2008) 165(7):820–9. doi: 10.1176/appi.ajp.2008.08010098 [PubMed] [CrossRef] [Google Scholar]

23. Murray G, Harvey A. Circadian rhythms and sleep in bipolar disorder. Bipolar Disord (2010) 12(5):459–72. doi: 10.1111/j.1399-5618.2010.00843.x [PubMed] [CrossRef] [Google Scholar]

24. Wulff K, Dijk DJ, Middleton B, Foster RG, Joyce EM. Sleep and circadian rhythm disruption in schizophrenia. Br J Psychiatry (2012) 200(4):308–16. doi: 10.1192/bjp.bp.111.096321 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Fernandez-Fernandez S, Almeida A, Bolaños JP. Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J (2012) 443(1):3–11. doi: 10.1042/bj20111943 [PubMed] [CrossRef] [Google Scholar]

26. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci (2009) 32(12):638–47. doi: 10.1016/j.tins.2009.08.002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol (2010) 119(1):7–35. doi: 10.1007/s00401-009-0619-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron (2017) 93(6):1420–1435 e5. doi: 10.1016/j.neuron.2017.02.030 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Haydon PG. Astrocytes and the modulation of sleep. Curr Opin Neurobiol (2017) 44:28–33. doi: 10.1016/j.conb.2017.02.008 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA (1998) 95(22):13290–5. doi: 10.1073/pnas.95.22.13290 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets (2013) 14(11):1225–36. doi: 10.2174/13894501113149990156 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Kato T, Stine OC, McMahon FJ, Crowe RR. Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder. Biol Psychiatry (1997) 42(10):871–5. doi: 10.1016/S0006-3223(97)00012-7 [PubMed] [CrossRef] [Google Scholar]

33. Kato T. Mitochondrial dysfunction in bipolar disorder: from 31P-magnetic resonance spectroscopic findings to their molecular mechanisms. Int Rev Neurobiol (2005) 63:21–40. doi: 10.1016/S0074-7742(05)63002-4 [PubMed] [CrossRef] [Google Scholar]

34. Cataldo AM, McPhie DL, Lange NT, Punzell S, Elmiligy S, Ye NZ, et al.. Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am J Pathol (2010) 177(2):575–85. doi: 10.2353/ajpath.2010.081068 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, et al.. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci (2012) 13(5):293–307. doi: 10.1038/nrn3229 [PubMed] [CrossRef] [Google Scholar]

36. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol (2000) 279(6):L1005–28. doi: 10.1152/ajplung.2000.279.6.L1005 [PubMed] [CrossRef] [Google Scholar]

37. Rhee SG. Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med (1999) 31(2):53–9. doi: 10.1038/emm.1999.9 [PubMed] [CrossRef] [Google Scholar]

38. Fischer F, Hamann A, Osiewacz HD. Mitochondrial quality control: an integrated network of pathways. Trends Biochem Sci (2012) 37(7):284–92. doi: 10.1016/j.tibs.2012.02.004 [PubMed] [CrossRef] [Google Scholar]

39. Zavodnik IB. Mitochondria, calcium homeostasis and calcium signaling. BioMed Khim (2016) 62(3):311–7. doi: 10.18097/PBMC20166203311 [PubMed] [CrossRef] [Google Scholar]

40. Kato T, Takahashi S, Shioiri T, Inubushi T. Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord (1992) 26(4):223–30. doi: 10.1016/0165-0327(92)90099-r [PubMed] [CrossRef] [Google Scholar]

41. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, et al.. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev (2011) 35(3):804–17. doi: 10.1016/j.neubiorev.2010.10.001 [PubMed] [CrossRef] [Google Scholar]

42. Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, et al.. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature (2015) 527(7576):95–9. doi: 10.1038/nature15526 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Rao JS, Harry GJ, Rapoport SI, Kim HW. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry (2010) 15(4):384–92. doi: 10.1038/mp.2009.47 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Scaini G, Andrews T, Lima CNC, Benevenuto D, Streck EL, Quevedo J. Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion (2021) 57:23–36. doi: 10.1016/j.mito.2020.12.002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium (2018) 70:56–63. doi: 10.1016/j.ceca.2017.05.004 [PubMed] [CrossRef] [Google Scholar]

46. Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, et al.. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium (2018) 69:62–72. doi: 10.1016/j.ceca.2017.05.003 [PubMed] [CrossRef] [Google Scholar]

47. Belosludtsev KN, Dubinin MV, Belosludtseva NV, Mironova GD. Mitochondrial Ca2+ transport: Mechanisms, molecular structures, and role in cells. Biochem (Mosc) (2019) 84(6):593–607. doi: 10.1134/S0006297919060026 [PubMed] [CrossRef] [Google Scholar]

48. Harrison PJ, Hall N, Mould A, Al-Juffali N, Tunbridge EM. Cellular calcium in bipolar disorder: systematic review and meta-analysis. Mol Psychiatry (2021) 26(8):4106–16. doi: 10.1038/s41380-019-0622-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Greer PL, Greenberg ME. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron (2008) 59(6):846–60. doi: 10.1016/j.neuron.2008.09.002 [PubMed] [CrossRef] [Google Scholar]

50. Quiroz JA, Gray NA, Kato T, Manji HK. Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology (2008) 33(11):2551–65. doi: 10.1038/sj.npp.1301671 [PubMed] [CrossRef] [Google Scholar]

51. Kuang H, Duong A, Jeong H, Zachos K, Andreazza AC. Lactate in bipolar disorder: A systematic review and meta-analysis. Psychiatry Clin Neurosci (2018) 72(8):546–55. doi: 10.1111/pcn.12671 [PubMed] [CrossRef] [Google Scholar]

52. Dogan AE, Yuksel C, Du F, Chouinard VA, Ongur D. Brain lactate and pH in schizophrenia and bipolar disorder: a systematic review of findings from magnetic resonance studies. Neuropsychopharmacology (2018) 43(8):1681–90. doi: 10.1038/s41386-018-0041-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Campbell I, Campbell H. A pyruvate dehydrogenase complex disorder hypothesis for bipolar disorder. Med Hypotheses (2019) 130:109263. doi: 10.1016/j.mehy.2019.109263 [PubMed] [CrossRef] [Google Scholar]

54. Silver IA, Deas J, Erecińska M. Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience (1997) 78(2):589–601. doi: 10.1016/S0306-4522(96)00600-8 [PubMed] [CrossRef] [Google Scholar]

55. el-Mallakh RS, Wyatt RJ. The Na,K-ATPase hypothesis for bipolar illness. Biol Psychiatry (1995) 37(4):235–44. doi: 10.1016/0006-3223(94)00201-D [PubMed] [CrossRef] [Google Scholar]

56. Henkel ND, Wu X, O'Donovan SM, Devine EA, Jiron JM, Rowland LM, et al.. Schizophrenia: a disorder of broken brain bioenergetics. Mol Psychiatry (2022) 27(5):2393–404. doi: 10.1038/s41380-022-01494-x [PubMed] [CrossRef] [Google Scholar]

57. Sullivan CR, O'Donovan SM, McCullumsmith RE, Ramsey A. Defects in bioenergetic coupling in schizophrenia. Biol Psychiatry (2018) 83(9):739–50. doi: 10.1016/j.biopsych.2017.10.014 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Duarte JMN, Xin L. Magnetic resonance spectroscopy in schizophrenia: Evidence for glutamatergic dysfunction and impaired energy metabolism. Neurochem Res (2019) 44(1):102–16. doi: 10.1007/s11064-018-2521-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Agarwal SM, Caravaggio F, Costa-Dookhan KA, Castellani L, Kowalchuk C, Asgariroozbehani R, et al.. Brain insulin action in schizophrenia: Something borrowed and something new. Neuropharmacology (2020) 163:107633. doi: 10.1016/j.neuropharm.2019.05.010 [PubMed] [CrossRef] [Google Scholar]

60. Chouinard VA, Henderson DC, Dalla Man C, Valeri L, Gray BE, Ryan KP, et al.. Impaired insulin signaling in unaffected siblings and patients with first-episode psychosis. Mol Psychiatry (2019) 24(10):1513–22. doi: 10.1038/s41380-018-0045-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med (2002) 8(12):1376–82. doi: 10.1038/nm1202-798 [PubMed] [CrossRef] [Google Scholar]

62. Pillinger T, Beck K, Gobjila C, Donocik JG, Jauhar S, Howes OD. Impaired glucose homeostasis in first-episode schizophrenia: A systematic review and meta-analysis. JAMA Psychiatry (2017) 74(3):261–9. doi: 10.1001/jamapsychiatry.2016.3803 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. McDermott E, de Silva P. Impaired neuronal glucose uptake in pathogenesis of schizophrenia – can GLUT 1 and GLUT 3 deficits explain imaging, post-mortem and pharmacological findings? Med Hypotheses (2005) 65(6):1076–81. doi: 10.1016/j.mehy.2005.06.022 [PubMed] [CrossRef] [Google Scholar]

64. Regenold WT, Pratt M, Nekkalapu S, Shapiro PS, Kristian T, Fiskum G. Mitochondrial detachment of hexokinase 1 in mood and psychotic disorders: implications for brain energy metabolism and neurotrophic signaling. J Psychiatr Res (2012) 46(1):95–104. doi: 10.1016/j.jpsychires.2011.09.018 [PubMed] [CrossRef] [Google Scholar]

65. Rowland LM, Pradhan S, Korenic S, Wijtenburg SA, Hong LE, Edden RA, et al.. Elevated brain lactate in schizophrenia: a 7 t magnetic resonance spectroscopy study. Transl Psychiatry (2016) 6(11):e967. doi: 10.1038/tp.2016.239 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Shan D, Mount D, Moore S, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal partitioning of hexokinase 1 suggests disruption of a glutamate transport protein complex in schizophrenia. Schizophr Res (2014) 154(1-3):1–13. doi: 10.1016/j.schres.2014.01.028 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, et al.. Potential metabolite markers of schizophrenia. Mol Psychiatry (2013) 18(1):67–78. doi: 10.1038/mp.2011.131 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Bergman O, Ben-Shachar D. Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: Possible interactions with cellular processes. Can J Psychiatry (2016) 61(8):457–69. doi: 10.1177/0706743716648290 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Wassef A, Baker J, Kochan LD. GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol (2003) 23(6):601–40. doi: 10.1097/01.jcp.0000095349.32154.a5 [PubMed] [CrossRef] [Google Scholar]

70. Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, et al.. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry (2014) 5:47. doi: 10.3389/fpsyt.2014.00047 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Patel S, Sharma D, Kalia K, Tiwari V. Crosstalk between endoplasmic reticulum stress and oxidative stress in schizophrenia: The dawn of new therapeutic approaches. Neurosci Biobehav Rev (2017) 83:589–603. doi: 10.1016/j.neubiorev.2017.08.025 [PubMed] [CrossRef] [Google Scholar]

72. Liu Y, Ouyang P, Zheng Y, Mi L, Zhao J, Ning Y, et al.. A selective review of the excitatory-inhibitory imbalance in schizophrenia: Underlying biology, genetics, microcircuits, and symptoms. Front Cell Dev Biol (2021) 9:664535. doi: 10.3389/fcell.2021.664535 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Gao R, Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med (2015) 15(2):146–67. doi: 10.2174/1566524015666150303003028 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Goodwin FK, Jaminson. KR. Manic-depressive illness: Bipolar disorders and recurrent depression. 2 ed Vol. 165. . New York, United States: Oxford University Press; (2008) p. 541–2. [Google Scholar]

75. Kurita M, Nishino S, Numata Y, Okubo Y, Sato T. The noradrenaline metabolite MHPG is a candidate biomarker from the manic to the remission state in bipolar disorder i: A clinical naturalistic study. PloS One (2014) 9(6):e100634. doi: 10.1371/journal.pone.0100634 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Petty F. GABA and mood disorders: a brief review and hypothesis. J Affect Disord (1995) 34(4):275–81. doi: 10.1016/0165-0327(95)00025-i [PubMed] [CrossRef] [Google Scholar]

77. Hashimoto K, Sawa A, Iyo M. Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry (2007) 62(11):1310–6. doi: 10.1016/j.biopsych.2007.03.017 [PubMed] [CrossRef] [Google Scholar]

78. Pruett BS, Meador-Woodruff JH. Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: A focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies. Schizophr Res (2020) 223:29–42. doi: 10.1016/j.schres.2020.09.003 [PubMed] [CrossRef] [Google Scholar]

79. Clay HB, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci (2011) 29(3):311–24. doi: 10.1016/j.ijdevneu.2010.08.007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans (2007) 35(Pt 5):1147–50. doi: 10.1042/BST0351147 [PubMed] [CrossRef] [Google Scholar]

81. Dwir D, Khadimallah I, Xin L, Rahman M, Du F, Ongur D, et al.. Redox and immune signaling in schizophrenia: New therapeutic potential. Int J Neuropsychopharmacol (2023) 26(5):309–21. doi: 10.1093/ijnp/pyad012 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature (2009) 459(7247):698–702. doi: 10.1038/nature07991 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Hu H, Gan J, Jonas P. Interneurons. fast-spiking, parvalbumin(+) GABAergic interneurons: from cellular design to microcircuit function. Science (2014) 345(6196):1255263. doi: 10.1126/science.1255263 [PubMed] [CrossRef] [Google Scholar]

84. Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci (2012) 35(1):57–67. doi: 10.1016/j.tins.2011.10.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Mauney SA, Athanas KM, Pantazopoulos H, Shaskan N, Passeri E, Berretta S, et al.. Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol Psychiatry (2013) 74(6):427–35. doi: 10.1016/j.biopsych.2013.05.007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Kulak A, Steullet P, Cabungcal JH, Werge T, Ingason A, Cuenod M, et al.. Redox dysregulation in the pathophysiology of schizophrenia and bipolar disorder: insights from animal models. Antioxid Redox Signal (2013) 18(12):1428–43. doi: 10.1089/ars.2012.4858 [PubMed] [CrossRef] [Google Scholar]

87. Harris JJ, Jolivet R, Attwell D. Synaptic energy use and supply. Neuron (2012) 75(5):762–77. doi: 10.1016/j.neuron.2012.08.019 [PubMed] [CrossRef] [Google Scholar]

88. Kahn RS, Sommer IE. The neurobiology and treatment of first-episode schizophrenia. Mol Psychiatry (2015) 20(1):84–97. doi: 10.1038/mp.2014.66 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Ben-Shachar D, Laifenfeld D. Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol (2004) 59:273–96. doi: 10.1016/S0074-7742(04)59011-6 [PubMed] [CrossRef] [Google Scholar]

90. Kim YK, Na KS. Neuroprotection in schizophrenia and its therapeutic implications. Psychiatry Investig (2017) 14(4):383–91. doi: 10.4306/pi.2017.14.4.383 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Morish*ta H, Cabungcal J-H, Chen Y, Do KQ, Hensch TK. Prolonged period of cortical plasticity upon redox dysregulation in fast-spiking interneurons. Biol Psychiatry (2015) 78(6):396–402. doi: 10.1016/j.biopsych.2014.12.026 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry (2011) 70(7):663–71. doi: 10.1016/j.biopsych.2011.04.013 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Mazza M, Di Nicola M, Della Marca G, Janiri L, Bria P, Mazza S. Bipolar disorder and epilepsy: a bidirectional relation? neurobiological underpinnings, current hypotheses, and future research directions. Neuroscientist (2007) 13(4):392–404. doi: 10.1177/10738584070130041101 [PubMed] [CrossRef] [Google Scholar]

94. Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell (2018) 174(2):497. doi: 10.1016/j.cell.2018.06.051 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Ruan Y, Chen L, She D, Chung Y, Ge L, Han L. Ketogenic diet for epilepsy: an overview of systematic review and meta-analysis. Eur J Clin Nutr (2022) 76(9):1234–44. doi: 10.1038/s41430-021-01060-8 [PubMed] [CrossRef] [Google Scholar]

96. Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol (1969) 25(3):295–330. doi: 10.1016/0014-4886(69)90128-9 [PubMed] [CrossRef] [Google Scholar]

97. Ettinger AB. Psychotropic effects of antiepileptic drugs. Neurology (2006) 67(11):1916–25. doi: 10.1212/01.wnl.0000247045.85646.c0 [PubMed] [CrossRef] [Google Scholar]

98. Ghaemi SN, Boiman EE, Goodwin FK. Kindling and second messengers: an approach to the neurobiology of recurrence in bipolar disorder. Biol Psychiatry (1999) 45(2):137–44. doi: 10.1016/s0006-3223(98)00256-x [PubMed] [CrossRef] [Google Scholar]

99. Weisler RH, Cutler AJ, Ballenger JC, Post RM, Ketter TA. The use of antiepileptic drugs in bipolar disorders: a review based on evidence from controlled trials. CNS Spectr (2006) 11(10):788–99. doi: 10.1017/s1092852900014917 [PubMed] [CrossRef] [Google Scholar]

100. Kupka R, Post R. Kindling as a model of affectice disorder. In: Trimble M, Schimitz B, editors. Seizures, affective disorders and anticonvlusant drugs. Guilford, UK: Clarius; (2002). [Google Scholar]

101. Barry JJ. The recognition and management of mood disorders as a comorbidity of epilepsy. Epilepsia (2003) 44(Suppl 4):30–40. doi: 10.1046/j.1528-1157.44.s4.4.x [PubMed] [CrossRef] [Google Scholar]

102. Adler CM, DelBello MP, Jarvis K, Levine A, Adams J, Strakowski SM. Voxel-based study of structural changes in first-episode patients with bipolar disorder. Biol Psychiatry (2007) 61(6):776–81. doi: 10.1016/j.biopsych.2006.05.042 [PubMed] [CrossRef] [Google Scholar]

103. Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al.. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res (2011) 20(10):1727–36. doi: 10.1007/s11136-011-9903-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Yu BJ, Oz RS, Sethi S. Ketogenic diet as a metabolic therapy for bipolar disorder: Clinical developments. J Affect Disord Rep (2023) 11:100457. doi: 10.1016/j.jadr.2022.100457 [CrossRef] [Google Scholar]

105. Rho JM, Boison D. The metabolic basis of epilepsy. Nat Rev Neurol (2022) 18(6):333–47. doi: 10.1038/s41582-022-00651-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. VanItallie TB, Nufert TH. Ketones: metabolism's ugly duckling. Nutr Rev (2003) 61(10):327–41. doi: 10.1301/nr.2003.oct.327-341 [PubMed] [CrossRef] [Google Scholar]

107. Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, et al.. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J (1995) 9(8):651–8. doi: 10.1096/fasebj.9.8.7768357 [PubMed] [CrossRef] [Google Scholar]

108. Hasan-Olive MM, Lauritzen KH, Ali M, Rasmussen LJ, Storm-Mathisen J, Bergersen LH. A ketogenic diet improves mitochondrial biogenesis and bioenergetics via the PGC1alpha-SIRT3-UCP2 axis. Neurochem Res (2019) 44(1):22–37. doi: 10.1007/s11064-018-2588-6 [PubMed] [CrossRef] [Google Scholar]

109. Hubbard WB, Vekaria HJ, Sullivan PG. Mitochondrial drug delivery systems, in clinical bioenergetics: From pathophysiology to clinical translation. London, United Kingdom: Elsevier; (2020) p. 385–409. [Google Scholar]

110. Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, et al.. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol (2006) 60(2):223–35. doi: 10.1002/ana.20899 [PubMed] [CrossRef] [Google Scholar]

111. Yudkoff M, Daikhin Y, Horyn O, Nissim I, Nissim I. Ketosis and brain handling of glutamate, glutamine, and GABA. Epilepsia (2008) 49 Suppl 8(Suppl 8):73–5. doi: 10.1111/j.1528-1167.2008.01841.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Erecinska M, Nelson D, Daikhin Y, Yudkoff M. Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium, and ketone bodies. J Neurochem (1996) 67(6):2325–34. doi: 10.1046/j.1471-4159.1996.67062325.x [PubMed] [CrossRef] [Google Scholar]

113. Kraeuter AK, van den Buuse M, Sarnyai Z. Ketogenic diet prevents impaired prepulse inhibition of startle in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res (2019) 206:244–50. doi: 10.1016/j.schres.2018.11.011 [PubMed] [CrossRef] [Google Scholar]

114. Hollis F, Mitchell ES, Canto C, Wang D, Sandi C. Medium chain triglyceride diet reduces anxiety-like behaviors and enhances social competitiveness in rats. Neuropharmacology (2018) 138:245–56. doi: 10.1016/j.neuropharm.2018.06.017 [PubMed] [CrossRef] [Google Scholar]

115. Ari C, Kovacs Z, Juhasz G, Murdun C, Goldhagen CR, Koutnik AP, et al.. Exogenous ketone supplements reduce anxiety-related behavior in sprague-dawley and wistar albino Glaxo/Rijswijk rats. Front Mol Neurosci (2016) 9:137. doi: 10.3389/fnmol.2016.00137 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Holper L, Ben-Shachar D, Mann JJ. Multivariate meta-analyses of mitochondrial complex i and IV in major depressive disorder, bipolar disorder, schizophrenia, alzheimer disease, and parkinson disease. Neuropsychopharmacology (2019) 44(5):837–49. doi: 10.1038/s41386-018-0090-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Huang C, Wang P, Xu X, Zhang Y, Gong Y, Hu W, et al.. The ketone body metabolite beta-hydroxybutyrate induces an antidepression-associated ramification of microglia via HDACs inhibition-triggered akt-small RhoGTPase activation. Glia (2018) 66(2):256–78. doi: 10.1002/glia.23241 [PubMed] [CrossRef] [Google Scholar]

118. Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab (2017) 25(2):262–84. doi: 10.1016/j.cmet.2016.12.022 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Achanta LB, Rae CD. Beta-hydroxybutyrate in the brain: One molecule, multiple mechanisms. Neurochem Res (2017) 42(1):35–49. doi: 10.1007/s11064-016-2099-2 [PubMed] [CrossRef] [Google Scholar]

120. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al.. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med (2015) 21(3):263–9. doi: 10.1038/nm.3804 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Polito R, La Torre ME, Moscatelli F, Cibelli G, Valenzano A, Panaro MA, et al.. The ketogenic diet and neuroinflammation: The action of beta-hydroxybutyrate in a microglial cell line. Int J Mol Sci (2023) 24(4). doi: 10.3390/ijms24043102 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. He C, Zhao Y, Jiang X, Liang X, Yin L, Yin Z, et al.. Protective effect of ketone musk on LPS/ATP-induced pyroptosis in J774A.1 cells through suppressing NLRP3/GSDMD pathway. Int Immunopharmacol (2019) 71:328–35. doi: 10.1016/j.intimp.2019.03.054 [PubMed] [CrossRef] [Google Scholar]

123. Julio-Amilpas A, Montiel T, Soto-Tinoco E, Geronimo-Olvera C, Massieu L. Protection of hypoglycemia-induced neuronal death by beta-hydroxybutyrate involves the preservation of energy levels and decreased production of reactive oxygen species. J Cereb Blood Flow Metab (2015) 35(5):851–60. doi: 10.1038/jcbfm.2015.1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Benes FM, Matzilevich D, Burke RE, Walsh J. The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry (2006) 11(3):241–51. doi: 10.1038/sj.mp.4001758 [PubMed] [CrossRef] [Google Scholar]

125. Kapczinski F, Dal-Pizzol F, Teixeira AL, Magalhaes PV, Kauer-Sant'Anna M, Klamt F, et al.. Peripheral biomarkers and illness activity in bipolar disorder. J Psychiatr Res (2011) 45(2):156–61. doi: 10.1016/j.jpsychires.2010.05.015 [PubMed] [CrossRef] [Google Scholar]

126. Valvassori SS, Bavaresco DV, Feier G, Cechinel-Recco K, Steckert AV, Varela RB, et al.. Increased oxidative stress in the mitochondria isolated from lymphocytes of bipolar disorder patients during depressive episodes. Psychiatry Res (2018) 264:192–201. doi: 10.1016/j.psychres.2018.03.089 [PubMed] [CrossRef] [Google Scholar]

127. Dogra S, Sona C, Kumar A, Yadav PN. Epigenetic regulation of g protein coupled receptor signaling and its implications in psychiatric disorders. Int J Biochem Cell Biol (2016) 77(Pt B):226–39. doi: 10.1016/j.biocel.2016.03.012 [PubMed] [CrossRef] [Google Scholar]

128. Kalinovic R, Pascariu A, Vlad G, Nitusca D, Salcudean A, Sirbu IO, et al.. Involvement of the expression of g protein-coupled receptors in schizophrenia. Pharm (Basel) (2024) 17(1). doi: 10.3390/ph17010085 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Spigoni V, Cinquegrani G, Iannozzi NT, Frigeri G, Maggiolo G, Maggi M, et al.. Activation of g protein-coupled receptors by ketone bodies: Clinical implication of the ketogenic diet in metabolic disorders. Front Endocrinol (Lausanne) (2022) 13:972890. doi: 10.3389/fendo.2022.972890 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Fu S-P, Wang J-F, Xue W-J, Liu H-M, Liu B-r, Zeng Y-L, et al.. Anti-inflammatory effects of BHBA in both in vivo and in vitro parkinson’s disease models are mediated by GPR109A-dependent mechanisms. J Neuroinflamm (2015) 12(1):9. doi: 10.1186/s12974-014-0230-3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Athinarayanan SJ, Adams RN, Hallberg SJ, McKenzie AL, Bhanpuri NH, Campbell WW, et al.. Long-term effects of a novel continuous remote care intervention including nutritional ketosis for the management of type 2 diabetes: A 2-year non-randomized clinical trial. Front Endocrinol (Lausanne) (2019) 10:348. doi: 10.3389/fendo.2019.00348 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Hombali A, Seow E, Yuan Q, Chang SHS, Satghare P, Kumar S, et al.. Prevalence and correlates of sleep disorder symptoms in psychiatric disorders. Psychiatry Res (2019) 279:116–22. doi: 10.1016/j.psychres.2018.07.009 [PubMed] [CrossRef] [Google Scholar]

133. Grigolon RB, Trevizol AP, Cerqueira RO, Lee Y, Mansur RB, McIntyre RS, et al.. Hypersomnia and bipolar disorder: A systematic review and meta-analysis of proportion. J Affect Disord (2019) 246:659–66. doi: 10.1016/j.jad.2018.12.030 [PubMed] [CrossRef] [Google Scholar]

134. Chen Y, Hong W, Fang Y. Role of biological rhythm dysfunction in the development and management of bipolar disorders: a review. Gen Psychiatr (2020) 33(1):e100127. doi: 10.1136/gpsych-2019-100127 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Meyer N, Faulkner SM, McCutcheon RA, Pillinger T, Dijk DJ, MacCabe JH. Sleep and circadian rhythm disturbance in remitted schizophrenia and bipolar disorder: A systematic review and meta-analysis. Schizophr Bull (2020) 46(5):1126–43. doi: 10.1093/schbul/sbaa024 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Zangani C, Casetta C, Saunders AS, Donati F, Maggioni E, D'Agostino A. Sleep abnormalities across different clinical stages of bipolar disorder: A review of EEG studies. Neurosci Biobehav Rev (2020) 118:247–57. doi: 10.1016/j.neubiorev.2020.07.031 [PubMed] [CrossRef] [Google Scholar]

137. Talih F, Gebara NY, Andary FS, Mondello S, Kobeissy F, Ferri R. Delayed sleep phase syndrome and bipolar disorder: Pathogenesis and available common biomarkers. Sleep Med Rev (2018) 41:133–40. doi: 10.1016/j.smrv.2018.02.002 [PubMed] [CrossRef] [Google Scholar]

138. Moon JH, Cho CH, Son GH, Geum D, Chung S, Kim H, et al.. Advanced circadian phase in mania and delayed circadian phase in mixed mania and depression returned to normal after treatment of bipolar disorder. EBioMedicine (2016) 11:285–95. doi: 10.1016/j.ebiom.2016.08.019 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Levenson JC, Axelson DA, Merranko J, Angulo M, Goldstein TR, Mullin BC, et al.. Differences in sleep disturbances among offspring of parents with and without bipolar disorder: association with conversion to bipolar disorder. Bipolar Disord (2015) 17(8):836–48. doi: 10.1111/bdi.12345 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Chan MS, Chung KF, Yung KP, Yeung WF. Sleep in schizophrenia: A systematic review and meta-analysis of polysomnographic findings in case-control studies. Sleep Med Rev (2017) 32:69–84. doi: 10.1016/j.smrv.2016.03.001 [PubMed] [CrossRef] [Google Scholar]

141. Pritchett D, Wulff K, Oliver PL, Bannerman DM, Davies KE, Harrison PJ, et al.. Evaluating the links between schizophrenia and sleep and circadian rhythm disruption. J Neural Transm (Vienna) (2012) 119(10):1061–75. doi: 10.1007/s00702-012-0817-8 [PubMed] [CrossRef] [Google Scholar]

142. Ashton A, Jagannath A. Disrupted sleep and circadian rhythms in schizophrenia and their interaction with dopamine signaling. Front Neurosci (2020) 14:636. doi: 10.3389/fnins.2020.00636 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Benca RM, Obermeyer WH, Thisted RA, Gillin JC. Sleep and psychiatric disorders. a meta-analysis. Arch Gen Psychiatry (1992) 49(8):651–68. doi: 10.1001/archpsyc.1992.01820080059010 [PubMed] [CrossRef] [Google Scholar]

144. Castelnovo A, Graziano B, Ferrarelli F, D'Agostino A. Sleep spindles and slow waves in schizophrenia and related disorders: main findings, challenges and future perspectives. Eur J Neurosci (2018) 48(8):2738–58. doi: 10.1111/ejn.13815 [PubMed] [CrossRef] [Google Scholar]

145. Miller BJ, McCall WV. Meta-analysis of insomnia, suicide, and psychopathology in schizophrenia. Curr Opin Psychiatry (2023) 36(3):156–65. doi: 10.1097/YCO.0000000000000856 [PubMed] [CrossRef] [Google Scholar]

146. Ferrarelli F, Huber R, Peterson MJ, Massimini M, Murphy M, Riedner BA, et al.. Reduced sleep spindle activity in schizophrenia patients. Am J Psychiatry (2007) 164(3):483–92. doi: 10.1176/ajp.2007.164.3.483 [PubMed] [CrossRef] [Google Scholar]

147. Ferrarelli F, Peterson MJ, Sarasso S, Riedner BA, Murphy MJ, Benca RM, et al.. Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Am J Psychiatry (2010) 167(11):1339–48. doi: 10.1176/appi.ajp.2010.09121731 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Buchmann A, Dentico D, Peterson MJ, Riedner BA, Sarasso S, Massimini M, et al.. Reduced mediodorsal thalamic volume and prefrontal cortical spindle activity in schizophrenia. Neuroimage (2014) 102 Pt 2(0 2):540–7. doi: 10.1016/j.neuroimage.2014.08.017 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Kaskie RE, Graziano B, Ferrarelli F. Topographic deficits in sleep spindle density and duration point to frontal thalamo-cortical dysfunctions in first-episode psychosis. J Psychiatr Res (2019) 113:39–44. doi: 10.1016/j.jpsychires.2019.03.009 [PubMed] [CrossRef] [Google Scholar]

150. Kaskie RE, Gill KM, Ferrarelli F. Reduced frontal slow wave density during sleep in first-episode psychosis. Schizophr Res (2019) 206:318–24. doi: 10.1016/j.schres.2018.10.024 [PubMed] [CrossRef] [Google Scholar]

151. Ferrarelli F, Tononi G. The thalamic reticular nucleus and schizophrenia. Schizophr Bull (2011) 37(2):306–15. doi: 10.1093/schbul/sbq142 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Woodward ND, Karbasforoushan H, Heckers S. Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatry (2012) 169(10):1092–9. doi: 10.1176/appi.ajp.2012.12010056 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Baran B, Karahanoglu FI, Mylonas D, Demanuele C, Vangel M, Stickgold R, et al.. Increased thalamocortical connectivity in schizophrenia correlates with sleep spindle deficits: Evidence for a common pathophysiology. Biol Psychiatry Cognit Neurosci Neuroimaging (2019) 4(8):706–14. doi: 10.1016/j.bpsc.2019.04.012 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Stubbs B, Vancampfort D, Veronese N, Solmi M, Gaughran F, Manu P, et al.. The prevalence and predictors of obstructive sleep apnea in major depressive disorder, bipolar disorder and schizophrenia: A systematic review and meta-analysis. J Affect Disord (2016) 197:259–67. doi: 10.1016/j.jad.2016.02.060 [PubMed] [CrossRef] [Google Scholar]

155. Kim T, Kang J. Relationship between obstructive sleep apnea, insulin resistance, and metabolic syndrome: a nationwide population-based survey. Endocr J (2023) 70(1):107–19. doi: 10.1507/endocrj.EJ22-0280 [PubMed] [CrossRef] [Google Scholar]

156. Toalson P, Ahmed S, Hardy T, Kabinoff G. The metabolic syndrome in patients with severe mental illnesses. Prim Care Companion J Clin Psychiatry (2004) 6(4):152–8. doi: 10.4088/pcc.v06n0402 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Gigase FAJ, Snijders G, Boks MP, de Witte LD. Neurons and glial cells in bipolar disorder: A systematic review of postmortem brain studies of cell number and size. Neurosci Biobehav Rev (2019) 103:150–62. doi: 10.1016/j.neubiorev.2019.05.027 [PubMed] [CrossRef] [Google Scholar]

158. Dong XH, Zhen XC. Glial pathology in bipolar disorder: potential therapeutic implications. CNS Neurosci Ther (2015) 21(5):393–7. doi: 10.1111/cns.12390 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Ongur D, Bechtholt AJ, Carlezon ,WA, Jr., Cohen BM. Glial abnormalities in mood disorders. Harv Rev Psychiatry (2014) 22(6):334–7. doi: 10.1097/HRP.0000000000000060 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, et al.. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron (2009) 61(2):213–9. doi: 10.1016/j.neuron.2008.11.024 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

161. Schmitt LI, Sims RE, Dale N, Haydon PG. Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine. J Neurosci (2012) 32(13):4417–25. doi: 10.1523/JNEUROSCI.5689-11.2012 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

162. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev (2012) 92(3):1087–187. doi: 10.1152/physrev.00032.2011 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science (1997) 276(5316):1265–8. doi: 10.1126/science.276.5316.1265 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

164. Peng L, Li B, Verkhratsky A. Targeting astrocytes in bipolar disorder. Expert Rev Neurother (2016) 16(6):649–57. doi: 10.1586/14737175.2016.1171144 [PubMed] [CrossRef] [Google Scholar]

165. Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, Behar KL, et al.. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry (2010) 15(5):501–11. doi: 10.1038/mp.2008.106 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Dolsen MR, Soehner AM, Harvey AG. Proinflammatory cytokines, mood, and sleep in interepisode bipolar disorder and insomnia: A pilot study with implications for psychosocial interventions. Psychosom Med (2018) 80(1):87–94. doi: 10.1097/PSY.0000000000000529 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

167. Mukherjee D, Krishnamurthy VB, Millett CE, Reider A, Can A, Groer M, et al.. Total sleep time and kynurenine metabolism associated with mood symptom severity in bipolar disorder. Bipolar Disord (2018) 20(1):27–34. doi: 10.1111/bdi.12529 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Van Cauter E, Spiegel K, Tasali E, Leproult R. Metabolic consequences of sleep and sleep loss. Sleep Med (2008) 9 Suppl 1(0 1):S23–8. doi: 10.1016/S1389-9457(08)70013-3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Knutson KL, Ryden AM, Mander BA, Van Cauter E. Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus. Arch Intern Med (2006) 166(16):1768–74. doi: 10.1001/archinte.166.16.1768 [PubMed] [CrossRef] [Google Scholar]

170. Zhu B, Hershberger PE, Kapella MC, Fritschi C. The relationship between sleep disturbance and glycaemic control in adults with type 2 diabetes: An integrative review. J Clin Nurs (2017) 26(23-24):4053–64. doi: 10.1111/jocn.13899 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Katagiri R, Asakura K, Kobayashi S, Suga and S. Sasaki H. Low intake of vegetables, high intake of confectionary, and unhealthy eating habits are associated with poor sleep quality among middle-aged female japanese workers. J Occup Health (2014) 56(5):359–68. doi: 10.1539/joh.14-0051-oa [PubMed] [CrossRef] [Google Scholar]

172. Phillips F, Chen CN, Crisp AH, Koval J, McGuinness B, Kalucy RS, et al.. Isocaloric diet changes and electroencephalographic sleep. Lancet (1975) 2(7938):723–5. doi: 10.1016/s0140-6736(75)90718-7 [PubMed] [CrossRef] [Google Scholar]

173. Yajima K, Seya T, Iwayama K, Hibi M, Hari S, Nakashima Y, et al.. Effects of nutrient composition of dinner on sleep architecture and energy metabolism during sleep. J Nutr Sci Vitaminol (Tokyo) (2014) 60(2):114–21. doi: 10.3177/jnsv.60.114 [PubMed] [CrossRef] [Google Scholar]

174. Masi D, Spoltore ME, Rossetti R, Watanabe M, Tozzi R, Caputi A, et al.. The influence of ketone bodies on circadian processes regarding appetite, sleep and hormone release: A systematic review of the literature. Nutrients (2022) 14(7). doi: 10.3390/nu14071410 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. O'Hearn LA. The therapeutic properties of ketogenic diets, slow-wave sleep, and circadian synchrony. Curr Opin Endocrinol Diabetes Obes (2021) 28(5):503–8. doi: 10.1097/MED.0000000000000660 [PubMed] [CrossRef] [Google Scholar]

176. Chikahisa S, Shimizu N, Shiuchi T, Sei H. Ketone body metabolism and sleep homeostasis in mice. Neuropharmacology (2014) 79:399–404. doi: 10.1016/j.neuropharm.2013.12.009 [PubMed] [CrossRef] [Google Scholar]

177. Siegmann MJ, Athinarayanan SJ, Hallberg SJ, McKenzie AL, Bhanpuri NH, Campbell WW, et al.. Improvement in patient-reported sleep in type 2 diabetes and prediabetes participants receiving a continuous care intervention with nutritional ketosis. Sleep Med (2019) 55:92–9. doi: 10.1016/j.sleep.2018.12.014 [PubMed] [CrossRef] [Google Scholar]

178. Sethi S, Ford JM. The role of ketogenic metabolic therapy on the brain in serious mental illness: A review. J Psychiatr Brain Sci (2022) 7(5). doi: 10.20900/jpbs.20220009 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Husain AM, Yancy WS, Jr., Carwile ST, Miller PP, Westman EC. Diet therapy for narcolepsy. Neurology (2004) 62(12):2300–2. doi: 10.1212/wnl.62.12.2300 [PubMed] [CrossRef] [Google Scholar]

180. Merlino G, Tereshko Y, Pez S, Dal Bello S, Pittino A, Di Lorenzo C, et al.. Sleep of migraine patients is ameliorated by ketogenic diet, independently of pain control. Sleep Med (2023) 107:196–201. doi: 10.1016/j.sleep.2023.05.006 [PubMed] [CrossRef] [Google Scholar]

181. Barrea L, Verde L, Di Lorenzo C, Savastano S, Colao A, Muscogiuri G. Can the ketogenic diet improve our dreams? effect of very low-calorie ketogenic diet (VLCKD) on sleep quality. J Transl Med (2023) 21(1):479. doi: 10.1186/s12967-023-04280-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

182. Hallbook T, Lundgren J, Rosen I. Ketogenic diet improves sleep quality in children with therapy-resistant epilepsy. Epilepsia (2007) 48(1):59–65. doi: 10.1111/j.1528-1167.2006.00834.x [PubMed] [CrossRef] [Google Scholar]

183. MacFadyen UM, Oswald I, Lewis SA. Starvation and human slow-wave sleep. J Appl Physiol (1973) 35(3):391–4. doi: 10.1152/jappl.1973.35.3.391 [PubMed] [CrossRef] [Google Scholar]

184. Robberechts R, Albouy G, Hespel P, Poffe C. Exogenous ketosis improves sleep efficiency and counteracts the decline in REM sleep after strenuous exercise. Med Sci Sports Exerc (2023) 55(11):2064–74. doi: 10.1249/MSS.0000000000003231 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. Afa*ghi A, O'Connor H, Chow CM. Acute effects of the very low carbohydrate diet on sleep indices. Nutr Neurosci (2008) 11(4):146–54. doi: 10.1179/147683008X301540 [PubMed] [CrossRef] [Google Scholar]

186. Iacovides S, Goble D, Paterson B, Meiring RM. Three consecutive weeks of nutritional ketosis has no effect on cognitive function, sleep, and mood compared with a high-carbohydrate, low-fat diet in healthy individuals: a randomized, crossover, controlled trial. Am J Clin Nutr (2019) 110(2):349–57. doi: 10.1093/ajcn/nqz073 [PubMed] [CrossRef] [Google Scholar]

187. Phinney SD. Ketogenic diets and physical performance. Nutr Metab (Lond) (2004) 1(1):2. doi: 10.1186/1743-7075-1-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Eckel-Mahan KL, Patel VR, de Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S, et al.. Reprogramming of the circadian clock by nutritional challenge. Cell (2013) 155(7):1464–78. doi: 10.1016/j.cell.2013.11.034 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al.. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab (2012) 15(6):848–60. doi: 10.1016/j.cmet.2012.04.019 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

190. Tognini P, Murakami M, Liu Y, Eckel-Mahan KL, Newman JC, Verdin E, et al.. Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab (2017) 26(3):523–538 e5. doi: 10.1016/j.cmet.2017.08.015 [PubMed] [CrossRef] [Google Scholar]

191. Oishi K, Uchida D, Ohkura N, DOI R, Ishida N, Kadota K, et al.. Ketogenic diet disrupts the circadian clock and increases hypofibrinolytic risk by inducing expression of plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol (2009) 29(10):1571–7. doi: 10.1161/ATVBAHA.109.190140 [PubMed] [CrossRef] [Google Scholar]

192. Oishi K, Yamamoto S, Uchida D, Doi R. Ketogenic diet and fasting induce the expression of cold-inducible RNA-binding protein with time-dependent hypothermia in the mouse liver. FEBS Open Bio (2013) 3:192–5. doi: 10.1016/j.fob.2013.03.005 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

193. Genzer Y, Dadon M, Burg C, Chapnik N, Froy O. Ketogenic diet delays the phase of circadian rhythms and does not affect AMP-activated protein kinase (AMPK) in mouse liver. Mol Cell Endocrinol (2015) 417:124–30. doi: 10.1016/j.mce.2015.09.012 [PubMed] [CrossRef] [Google Scholar]

194. Ferrarelli F. Sleep abnormalities in schizophrenia: State of the art and next steps. Am J Psychiatry (2021) 178(10):903–13. doi: 10.1176/appi.ajp.2020.20070968 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

195. Chemerinski E, Ho BC, Flaum M, Arndt S, Fleming F, Andreasen NC. Insomnia as a predictor for symptom worsening following antipsychotic withdrawal in schizophrenia. Compr Psychiatry (2002) 43(5):393–6. doi: 10.1053/comp.2002.34627 [PubMed] [CrossRef] [Google Scholar]

196. Wehr TA. Sleep-loss as a possible mediator of diverse causes of mania. Br J Psychiatry (1991) 159:576–8. doi: 10.1192/bjp.159.4.576 [PubMed] [CrossRef] [Google Scholar]

Sleep, mood disorders, and the ketogenic diet: potential therapeutic targets for bipolar disorder and schizophrenia (2024)
Top Articles
Bread with Butter: How Healthy?
17 Canned Tuna Recipes That Aren't Just Tuna Melts or Casseroles
Davita Internet
Doublelist Paducah Ky
Caroline Cps.powerschool.com
27 Places With The Absolute Best Pizza In NYC
Optum Medicare Support
Free Robux Without Downloading Apps
Mylife Cvs Login
Bbc 5Live Schedule
Phillies Espn Schedule
Seafood Bucket Cajun Style Seafood Restaurant in South Salt Lake - Restaurant menu and reviews
What is the difference between a T-bill and a T note?
Springfield Mo Craiglist
Magicseaweed Capitola
Uktulut Pier Ritual Site
How to Create Your Very Own Crossword Puzzle
What Is Vioc On Credit Card Statement
Euro Style Scrub Caps
Ppm Claims Amynta
Where to eat: the 50 best restaurants in Freiburg im Breisgau
Who is Jenny Popach? Everything to Know About The Girl Who Allegedly Broke Into the Hype House With Her Mom
Fleet Farm Brainerd Mn Hours
Urban Dictionary Fov
Page 2383 – Christianity Today
Giantbodybuilder.com
Craigslist Brandon Vt
NV Energy issues outage watch for South Carson City, Genoa and Glenbrook
Skepticalpickle Leak
Nacogdoches, Texas: Step Back in Time in Texas' Oldest Town
Xfinity Outage Map Lacey Wa
Haley Gifts :: Stardew Valley
Black Adam Showtimes Near Amc Deptford 8
Chilangos Hillsborough Nj
Collier Urgent Care Park Shore
The Thing About ‘Dateline’
Fototour verlassener Fliegerhorst Schönwald [Lost Place Brandenburg]
Www Craigslist Com Brooklyn
Nba Props Covers
Wal-Mart 140 Supercenter Products
Memberweb Bw
Random Animal Hybrid Generator Wheel
Maplestar Kemono
Craigslist Chautauqua Ny
Theatervoorstellingen in Nieuwegein, het complete aanbod.
Rovert Wrestling
Used Auto Parts in Houston 77013 | LKQ Pick Your Part
Fresno Craglist
Msatlantathickdream
Hsi Delphi Forum
Ssss Steakhouse Menu
Tamilblasters.wu
Latest Posts
Article information

Author: Tyson Zemlak

Last Updated:

Views: 6044

Rating: 4.2 / 5 (43 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Tyson Zemlak

Birthday: 1992-03-17

Address: Apt. 662 96191 Quigley Dam, Kubview, MA 42013

Phone: +441678032891

Job: Community-Services Orchestrator

Hobby: Coffee roasting, Calligraphy, Metalworking, Fashion, Vehicle restoration, Shopping, Photography

Introduction: My name is Tyson Zemlak, I am a excited, light, sparkling, super, open, fair, magnificent person who loves writing and wants to share my knowledge and understanding with you.